Programme de colle nº 21, semaine du 24 mars au 28 mars 2025.

Les points suivis d'une (*) sont à savoir par les étudiants et doivent être considérés comme des « questions de cours ».

Tout le bilinéaire, notamment les endomorphismes particuliers des espaces euclidiens.

1 Isométries vectorielles d'un espace euclidien

- Soient E un espace euclidien et $f \in \mathcal{L}(E)$. On dit que f est une isométrie vectorielle (ou un automorphisme orthogonal) lorsque pour tout x dans E on a : ||f(x)|| = ||x||. On note O(E) l'ensemble des isométries vectorielles de E.
- Une isométrie vectorielle de E est inversible!
- Théorème. Soit E un espace euclidien. Alors « O(E) est un groupe pour la loi \circ » : pour f et g dans O(E), on a
 - 1. $f \circ g \in O(E)$
 - 2. $f^{-1} \in O(E)$
- Théorème. Soient E un espace euclidien et $f \in \mathcal{L}(E)$. Les propriétés suivantes sont équivalentes :
 - (1) $f \in O(E)$
 - (2) $(\forall (x,y) \in E^2)(\langle f(x), f(y) \rangle = \langle x, y \rangle)$
- Théorème. Soient E un espace euclidien et $f \in \mathcal{L}(E)$. Les propriétés suivantes sont équivalentes :
 - (1) $f \in O(E)$
 - (2) Pour toute base orthonormale (e_1, \ldots, e_n) de E, la famille $(f(e_1), \ldots, f(e_n))$ est une base orthonormale de E.
 - (3) Il existe une base orthonormale (e_1, \ldots, e_n) de E telle que la famille $(f(e_1), \ldots, f(e_n))$ soit une base orthonormale de E.
- Théorème. Soient E un espace euclidien, $f \in O(E)$ et F un sous-espace f-stable de E. Alors F^{\perp} est f-stable

2 Matrices orthogonales

- Les matrices orthogonales sont les matrices Ω de $\mathcal{M}_n(\mathbb{R})$ telles que ${}^t\!\Omega\Omega = I$. On retient qu'une matrice orthogonale Ω est inversible et $\Omega^{-1} = {}^t\!\Omega$. On note $O_n(\mathbb{R})$ l'ensemble des matrices orthogonales de $\mathcal{M}_n(\mathbb{R})$.
- Si P est dans $_n(\mathbb{R})$ alors :
 - P est inversible et $P^{-1} = {}^{t}P$: pas de calcul pour l'inverse!
 - det $P=\pm 1$. On note $SO_n(\mathbb{R})$ les matrices de $O_n(\mathbb{R})$ de déterminant 1.
- « $O_n(\mathbb{R})$) est un groupe pour la multiplication matricielle » : pour P et Q dans $O_n(\mathbb{R})$, on a
 - 1. $PQ \in O_n(\mathbb{R})$
 - $2. P^{-1} \in O_n(\mathbb{R})$
- (*) Soit $P \in \mathcal{M}_n(\mathbb{R})$. Les propriétés suivantes sont équivalentes :
 - $(1) P \in O_n(\mathbb{R})$
 - (2) Les colonnes de P forment une base orthonormée pour le produit scalaire canonique de $\mathcal{M}_{n,1}(\mathbb{R})$
- Théorème. Soient E un espace euclidien, $\beta = (e_1, \ldots, e_n)$ une base orthonormale de E et $f \in \mathcal{L}(E)$. Les propriétés suivantes sont équivalentes :
 - (1) $f \in O(E)$
 - (2) Pour toute base orthonormale β de E, on a $[f]_{\beta} \in O_n(\mathbb{R})$.
 - (3) Il existe une base orthonormale β de E telle que $[f]_{\beta} \in O_n(\mathbb{R})$.
- Théorème. Les matrices orthogonales sont exactement les matrices de passage entre bases orthonormales d'un espace euclidien E de dimension n.

• (*) Exemple des réflexions (symétries orthogonales par rapport à un hyperplan). Si H est un hyperplan de E avec $H=a^{\perp}$, la réflexion par rapport à H est :

$$x \mapsto x - 2 \frac{\langle a, x \rangle}{\|a\|^2} a.$$

2.1 Orientation d'un espace vectoriel euclidien

Orienter un espace euclidien c'est choisir une base orthonormées β_0 de E. Les **bases orthonormées directes** de E sont alors les bases β pour lesquelles la matrice de passage de β_0 à β est de déterminant 1.

3 Isométries vectorielles d'un plan euclidien

- (*)Théorème. Les matrices de $SO_2(\mathbb{R})$ sont les matrices de la forme $\begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix}$ et celles de O(2) de déterminant -1 sont les matrices de la forme $\begin{pmatrix} \alpha & \beta \\ \beta & -\alpha \end{pmatrix}$ où $\alpha^2 + \beta^2 = 1$.
- D'après le théorème précédent, une matrice A de $SO_2(\mathbb{R})$ s'écrit sous la forme

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix},$$

où $\theta \in \mathbb{R}$, et représente ainsi la rotation d'angle θ dans le sens direct de \mathbb{R}^2 canonique. Par conséquent deux matrices de $SO_2(\mathbb{R})$ commutent.

- De même, une matrice A de $O_2(\mathbb{R})$ de déterminant -1 s'écrit sous la forme $A = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$ et représente la réflexion par rapport à la droite dirigée par le vecteur $(\cos(\theta/2), \sin(\theta/2))$ dans \mathbb{R}^2 canonique.
- Traduction en terme d'endomorphisme. Ici E est un espace euclidien de dimension 2. En regardant la matrice d'un élément de O(E) dans une base orthonormale (qui sera d'une des formes données par le théorème ci-dessus), on peut classifier les éléments de O(E).
 - Les éléments de SO(E) sont des rotations.
 - Les éléments de O(E) de déterminant -1 sont des réflexions par rapport à des droites.
- Rappel. Dans le plan complexe orienté, la rotation d'angle θ est $z\mapsto z\mathrm{e}^{i\theta}$.

4 Endomorphismes auto-adjoints d'un espace euclidien

4.1 Le théorème spectral

• Soit (E, \langle, \rangle) un espace pré-hilbertien réel. Un endomorphisme f de E est dit $sym\acute{e}trique$, ou auto-adjoint, lorsque pour tout x,y dans E on a :

$$\langle f(x), y \rangle = \langle x, f(y) \rangle$$

On note S(E) l'ensemble des endomorphismes auto-adjoint de E. C'est un sous-espace vectoriel de $\mathcal{L}(E)$.

- THÉORÈME. Lorsque $\beta = (e_1, \dots, e_n)$ une base de E, un endomorphisme f de E est auto-adjoint si et seulement si $\langle f(e_i), e_j \rangle = \langle e_i, f(e_j) \rangle$ pour tout (i, j).
- Théorème. Soient $(E,\langle\;,\;\rangle$ un espace euclidien et $f\in\mathcal{L}(E)$. Les propriétés suivantes sont équivalentes :
 - (i) f est auto-adjoint
 - (ii) Il existe une base orthonormale β de E telle que $[f]_{\beta}$ soit une matrice symétrique
 - (iii) Pour toute base orthonormale β de $E,\,[f]_\beta$ est une matrice symétrique
- Lorsque β une base orthonormale de E euclidien de dimension n, l'application $u \mapsto [u]_{\beta}$ est un isomorphisme d'espaces vectoriels de $\mathcal{S}(E)$ sur $\mathcal{S}_n(\mathbb{R})$.
- \bullet (*) Théorème. Les sous-espaces propres d'un endomorphisme auto-adjoint sont orthogonaux.
- Théorème. Si f est un endomorphisme auto-adjoint d'une espace euclidien et si F est un sous-espace stable par f alors F^{\perp} est stable par f.
- THÉORÈME SPECTRAL
 - 1. Tout endomorphisme auto-adjoint d'un espace euclidien est diagonalisable en base orthonormale.
 - 2. Si A est une matrice symétrique réelle alors A est [orthogonalement diagonalisable]: il existe P dans $O_n(\mathbb{R})$ et D matrice diagonale réelle telle que [$A = {}^tPDP$].
- (*) Un exercice important. Soit f un endomorphisme auto-adjoint d'un espace euclidien E, λ et μ la plus petite et la plus grande des valeurs propres de f. Démontrer que pour tout x dans E on a:

$$\lambda \|x\|^2 \leqslant \langle f(x), x \rangle \leqslant \mu \|x\|^2$$

4.2 Endomorphismes auto-adjoints positifs et définis positifs

• On dit qu'un endomorphisme auto-adjoint u d'un espace euclidien E est « positif » lorsque pour tout x dans E on a : $\langle u(x), x \rangle \ge 0$. Dans ce cas on écrit $u \in S^+(E)$.

On dit qu'un endomorphisme auto-adjoint u d'un espace euclidien E est « défini positif » lorsque pour tout x non nul dans E on a : $\langle u(x), x \rangle > 0$. Dans ce cas on écrit $u \in S^{++}(E)$.

- (*) Une remarque essentielle. Soient (E, \langle , \rangle) un espace euclidien et $u \in \mathcal{L}(E)$. Si $u \in S^{++}(E)$, alors $\varphi : (x,y) \mapsto \langle u(x), x \rangle$ est un produit scalaire sur E.
- On dit qu'une matrice $A \in S_n(\mathbb{R})$ est « positives », et on écrit $A \in S_n^+(\mathbb{R})$, lorsque pour tout X dans $\mathcal{M}_{n,1}(\mathbb{R})$:

$${}^{t}XAX \geqslant 0.$$

On dit qu'une matrice $A \in S_n(\mathbb{R})$ est « définie positives », et on écrit $A \in S_n^{++}(\mathbb{R})$, lorsque pour tout X dans $\mathcal{M}_{n,1}(\mathbb{R})$:

$$X \neq 0 \Rightarrow {}^{t}XAX > 0.$$

• (*) Théorème. Soit $A \in S_n(\mathbb{R})$.

- 1. On a l'équivalence : $A \in S_n^+(\mathbb{R}) \Leftrightarrow \operatorname{Spec}(A) \subset \mathbb{R}^+$
- 2. On a l'équivalence : $A \in S_n^{++}(\mathbb{R}) \Leftrightarrow \operatorname{Spec}(A) \subset \mathbb{R}_+^*$

4.3 Au passage

- (*) Un exercice important. Lorsque $A \in S_n^+(\mathbb{R})$ est non nulle, sa diagonale contient un coefficient strictement positif.
- (*) Un exercice important. Soit f un endomorphisme auto-adjoint d'un espace euclidien E, λ et μ la plus petite et la plus grande des valeurs propres de f. Démontrer que pour tout x dans E on a:

$$\lambda \|x\|^2 \leqslant \langle f(x), x \rangle \leqslant \mu \|x\|^2$$

- (*) Un exercice important : « Racine carrée » d'une matrice de $S_n^+(\mathbb{R})$. Soit $A \in S_n^+(\mathbb{R})$. Il existe alors $B \in S_n^+(\mathbb{R})$ telle que $B^2 = A$. On a même vu l'unicité (par diagonalisation simultanée).
- On a rencontré l'adjoint d'un endomorphisme d'un espace euclidien.

C'est sans doute la dernière semaine de colles en mathématiques pour les PC...