Le petit point de cours (1), une correction

Dans la suite \mathbb{K} désigne \mathbb{R} ou \mathbb{C} et, sauf mention contraire, E est un espace vectoriel sur \mathbb{K} .

- 1. $Du\ cours...$
 - a. Énoncer avec précision le théorème du rang.

Soient E et F deux espaces vectoriels sur \mathbb{K} avec E de dimension finie. Pour $f \in \mathcal{L}(E,F)$ on a:

$$\dim E = \operatorname{rg} f + \dim \ker f.$$

- b. Soient F_1, \ldots, F_p des sous-espaces de E. Donner la définition de l'expression « la somme $\sum_{i=1}^p F_i$ est directe » et donner une propriété équivalente à cette expression.
 - La somme $\sum_{i=1}^p F_i$ est directe lorsque tout élément x de $\sum_{i=1}^p F_i$ s'écrit de manière <u>unique</u> $x = \sum_{i=1}^p x_i$ avec chaque $x_i \in F_i$.
 - La somme $\sum_{i=1}^{p} F_i$ est directe si et seulement si, pour tout $(x_1, \dots, x_n) \in F_1 \times \dots \times F_n$ tel que $\sum_{i=1}^{n} x_i = 0_E$, on a : $x_1 = x_2 = \dots = x_n$.
- c. Qu'est-ce qu'une forme linéaire sur E?

Une forme linéaire sur E est un élément de $\mathcal{L}(E, \mathbb{K})$.

d. Démontrer qu'une forme linéaire sur E est soit nulle soit surjective.

Soit $f \in \mathcal{L}(E, \mathbb{K})$. Alors Im f est un sous-espace vectoriel de \mathbb{K} qui est de dimension 1. Ainsi ·

- ou bien dim Im f = 0 et alors Im $f = \{0_{\mathbb{K}}\}$;
- ou bien dim Im f = 1 et alors Im $f = \mathbb{K}$, donc f est surjective.
- 2. Dans cette question E est de dimension finie $n \ge 1$.
 - a. Qu'est-ce qu'un hyperplan de E?

Un hyperplan de E est un sous-espace vectoriel de dimension n-1.

b. Démontrer que tout sous-espace vectoriel F de E vérifiant $\dim F \leq n$ est inclus dans un hyperplan de E.

Soit F un sous-espace vectoriel de E de dimension $m \leq n-1$. Si $m=0, F=\{0\}$ est inclus dans tout hyperplan de E.

 $\operatorname{Si} m \geqslant 1$, on considère une base $(\varepsilon_1, \dots, \varepsilon_m)$ de F que l'on complète en une base $\varepsilon_1, \dots, \varepsilon_n)$ de E.

On a alors $F = \text{vect}(\varepsilon_1, \dots, \varepsilon_m) \subset \text{vect}(\varepsilon_1, \dots, \varepsilon_{n-1})$ qui est un hyperplan de E.

- 3. Soient f et g dans $\mathcal{L}(E)$.
 - a. Soit F un sous-espace de E. Donner la signification de : F est g-stable.

L'expression « F est g-stable » signifie que $g(F) \subset F$ i.e. $(\forall x \in F)(g(x) \in F)$.

b. Soit λ un réel. On note $E_{f,\lambda} = \ker(f - \lambda \operatorname{Id}_E)$. On suppose que f et g commutent, c'est à dire vérifient : $f \circ g = g \circ f$. Démontrer que $E_{f,\lambda}$ est g-stable.

Soit $x \in E_{f,\lambda}$. Montrons que $g(x) \in E_{f,\lambda}$. On a :

$$(f - \lambda \operatorname{Id}_E)(g(x)) = f \circ g(x) - \lambda g(x)$$

$$= g \circ f(x) - \lambda g(x)$$

$$= g(f(x) - \lambda x)$$

$$= g(0_E) = 0_E$$

Ainsi $g(x) \in E_{f,\lambda}$. Ceci étant vrai pour tout x dans $E_{f,\lambda}$, le sous-espace $E_{f,\lambda}$ est g-stable.

4. Soient A la matrice pleine de 1 dans $\mathcal{M}_n(\mathbb{R})$ (avec $n \geq 2$) et f l'endomorphisme de \mathbb{R}^n canoniquement associé à A. Déterminer $\mathrm{Im}\ f$ et $\ker f$. On notera (e_1,\ldots,e_n) la base canonique de \mathbb{R}^n .

La matrice A est de rang 1 donc (théorème du rang), ker f est de dimension n-1. En notant C_1, \ldots, C_n les colonnes de A et (e_1, \ldots, e_n) la base canonique de \mathbb{R}^n , comme $C_1 = C_2 = \cdots = C_n$, on a, pour tout $i \in \{2, \ldots, n\}$, $f(e_1 - e_i) = 0$. Mais la famille $(e_1 - e_i)_{i \in \{2, \ldots, n\}}$ est libre, donc :

$$\ker f = \text{vect}(e_1 - e_i)_{i \in \{2, \dots, n\}}.$$

Enfin Im $f = \text{vect}(f(e_1), \dots, f(e_n)) = \text{vect}(f(e_1))$, où:

$$f(e_1) = e_1 + e_2 + \dots + e_n$$
.

5. Dans cette question E est de dimension finie $n \ge 1$ et p est un projecteur de E de rang $r \ge 1$. Justifier qu'il existe une base β de E telle que la matrice de f dans β est :

$$[p]_{\beta} = \left(\begin{array}{c|c} I_r & 0_{n-r,r} \\ \hline 0_{r,n-r} & 0_{n-r} \end{array}\right),$$

où I_r est la matrice identité d'ordre r, et $0_{s,q}$ désigne la matrice nulle de $\mathcal{M}_{s,q}(\mathbb{K})$.

Comme p est un projecteur de E, $E = \operatorname{Im} p \oplus \ker p$. On prend alors une base β_1 de $\operatorname{Im} p$ et une base β_2 de $\ker p$ et on note $\beta = rec(\beta_1, \beta_2)$. La famille β est une base de E puisque $E = \operatorname{Im} p \oplus \ker p$ et la matrice $[p]_{\beta}$ est de la forme souhaitée car $\operatorname{Im} p$ est l'ensemble des vecteurs invariants par p.