Feuille d'exercices n° 13. Algèbre bilinéaire

Exercice 1

Soit $F = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y + z + t = 0\}$. Justifier que F est un sous-espace de \mathbb{R}^4 et déterminer le projeté orthogonal de u = (1, 1, 1, -1) sur F.

Exercice 2

Soient $E = \mathbb{R}_3[X]$ et :

$$\begin{cases} P_1 &= (X-1)(X-2)(X-4) \\ P_2 &= (X-1)(X-3)(X-4) \\ P_3 &= (X-2)(X-3)(X-4) \end{cases}$$

On pose $H = \text{vect}(P_1, P_2, P_3)$.

- 1. Justifier que H est un hyperplan de E et trouver φ forme linéaire sur E telle que $H=\ker \varphi$. Cette forme linéaire φ est-elle unique?
- 2. On considère le produit scalaire sur E défini par : $\langle P, Q \rangle = \sum_{k=1}^{4} P(k)Q(k)$. Soit $P \in E$. Trouver le projeté orthogonal de P sur H.

Exercice 3

On pose $E = \mathbb{R}_n[X]$. On considère l'application de E^2 dans E définie par : $\langle \cdot | \cdot \rangle : (P,Q) \mapsto \sum_{i=0}^n p_i q_i$ où on a écrit : $P(X) = \sum_{i=0}^n p_i X^i$...

- 1. Montrer que c'est un produit scalaire sur E.
- 2. Soit $F = \{P \in E | P(1) = 0\}$. Déterminer dist(1, F).

Exercice 4 (Matrices de Gram)

Soient (E, \langle , \rangle) un espace pré-hilbertien réel et $\theta = (a_1, \ldots, a_n)$ une famille dans E. On considère la matrice $G_{\theta} = [\langle a_i, a_j \rangle] \in \mathcal{M}_n(\mathbb{R})$.

- 1. Démontrer que G_{θ} est inversible si et seulement si θ est une famille libre.
- 2. On suppose que la famille θ est libre et on pose $F = \text{vect}(\theta)$. Soit $x \in E$. On note θ' la famille (a_1, \dots, a_n, x) . Démontrer que :

$$d(x, F) = \sqrt{\frac{\det G_{\theta'}}{\det G_{\theta}}}.$$

Exercice 5

Soit $E = \mathbb{R}_n[X]$ $(n \ge 1)$.

- 1. Démontrer que $\begin{pmatrix} E^2 & \longrightarrow & \mathbb{R} \\ (P,Q) & \longmapsto & \langle P \mid Q \rangle = \sum_{k=0}^n P(k)Q(k) \end{pmatrix}$ est un produit scalaire sur E.
- 2. On considère $\beta = (L_0, ..., L_n)$ où L_i est l'interpolateur de LAGRANGE élémentaire tel que $L_i(j) = \delta_i^j$ pour $(i, j) \in \{0, ..., n\}^2$. Démontrer que β est une base orthonormée de E.
- 3. Si P est dans E, donner les composantes de P dans β .

Exercice 6

Soit $E = \mathcal{C}([0, 2\pi], \mathbb{R})$.

- 1. Montrer que $(f,g) \mapsto \langle f,g \rangle = \int_0^{2\pi} f(t)g(t) dt$ est un produit scalaire sur E.
- 2. Pour k dans $\{0, ..., n\}$ et x réel on pose : $f_k(x) = \cos kx$ et $g_k(x) = \sin kx$. On pose encore $F = \text{vect}(f_k)_{k \in \mathbb{N}^*}$ et $G = \text{vect}(g_k)_{k \in \mathbb{N}^*}$. Démontrer que F et G sont des sous-espaces orthogonaux de E.
- 3. On note A la partie de E formée des fonctions positives. Déterminer A^{\perp} .

Exercice 7

Soient (E, \langle , \rangle) un espace euclidien et $S = \{x \in E \mid ||x|| = 1\}$. On considère la propriété \mathcal{P} suivante : « Pour tout $(x, y) \in S^2$ avec $x \neq y$ et $t \in]0,1[$ on a $tx + (1-t)y \notin S$ ».

- 1. Illustrer graphiquement la propriété \mathcal{P} dans le cas où $E = \mathbb{R}^2$ muni du produit scalaire canonique.
- 2. Démontrer que \mathcal{P} est vraie dans le cas général.

Exercice 8 (Le théorème de représentation de Riesz)

Soit (E, \langle , \rangle) un espace euclidien. Pour $a \in E$ on considère l'application $f_a : E \to \mathbb{R}$ définie, pour x dans E, par $f_a(x) = \langle a, x \rangle$.

- 1. Justifier que f_a est linéaire et donner son noyau.
- 2. Démontrer que l'application $f=\left(\begin{array}{ccc} E & \longrightarrow & \mathcal{L}(E,{\rm I\!R}) \\ a & \longmapsto & f_a \end{array}\right)$ est un isomorphisme.
- 3. En déduire que pour tout $\varphi \in \mathcal{L}(E,\mathbb{R})$ il existe un unique $a \in E$ tel que :

$$(\forall x \in E) (\varphi(x) = \langle a, x \rangle).$$

Ce dernier résultat est le théorème de représentation de Riesz : toute forme linéaire sur un espace euclidien « est représentée par un unique élément a de E à l'aide du produit scalaire ».

4. Une application : le dual de $\mathcal{M}_n(\mathbb{R})$. Dans cette question E est l'espace $\mathcal{M}_n(R)$. Démontrer que si φ est une forme linéaire sur $\mathcal{M}_n(\mathbb{R})$ alors il existe une unique matrice $A \in \mathcal{M}_n(\mathbb{R})$ telle que :

$$(\forall M \in E) (\varphi(M) = \operatorname{tr}(AM)).$$

Exercice 9

Soit E un espace pré-hilbertien réel. Soit $\beta = (e_1, ..., e_n)$ une famille libre de E telle que pour tout x dans $E : ||x||^2 = \sum_{i=1}^{n} \langle x, e_i \rangle^2$. Montrer que β est une base orthonormale de E.

Exercice 10

Soient E un espace euclidien et p un projecteur de E. Montrer l'équivalence des propriétés suivantes.

- (i) p est un projecteur orthogonal;
- (ii) Pour tout x dans E on a : $||p(x)|| \le ||x||$.

Exercice 11

Soit $n \in \mathbb{N}^*$. On considère $E = \mathcal{M}_n(\mathbb{R})$ l'espace vectoriel des matrices carrées d'ordre n. On pose : $\forall (A, B) \in E^2$, $\langle A, B \rangle =$ $\operatorname{tr}({}^{t}AB)$ où tr désigne la trace et ${}^{t}A$ désigne la transposée de la matrice A.

- 1. Prouver que \langle , \rangle est est un produit scalaire sur E.
- 2. On note $S_n(\mathbb{R})$ l'ensemble des matrices symétriques de E. Une matrice A de E est dite antisymétrique lorsque ${}^tA = -A$. On note $\mathcal{A}_n(\mathbb{R})$ l'ensemble des matrices antisymétriques de E.
 - a) Démontrer que $S_n(\mathbb{R})$ et $A_n(\mathbb{R})$ sont des sous-espaces vectoriels de E
 - b) Prouver que $E = \mathcal{S}_n(\mathbb{R}) \oplus \mathcal{A}_n(\mathbb{R})$.
 - c) Prouver que $A_n(\mathbb{R})^{\perp} = S_n(\mathbb{R})$.
 - d) Soit $A \in E$. Déterminer en fonction des coefficients de A la distance dist $(A, \mathcal{S}_n(\mathbb{R}))$.
- 3. Soit F l'ensemble des matrices diagonales de E. Déterminer F^{\perp} .

Soit $\Omega = [\omega_{ij}]$ dans $O_n(\mathbb{R})$. Borner de manière optimale $\sum_{i=1}^{n} \sum_{j=1}^{n} \omega_{ij}$.

Exercice 13

Dans IRⁿ muni du produit scalaire canonique, déterminer la matrice dans la base canonique de la réflexion par rapport à

$$F = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1 + x_2 + \dots + x_n = 0\}.$$

Exercice 14

Soit E un espace euclidien de dimension n et f un endomorphisme symétrique défini positif de E. Démontrer que pour tout x, y dans E on a:

$$|\langle x, y \rangle|^2 \leq \langle x, f(x) \rangle \langle y, f^{-1}(y) \rangle.$$

Exercice 15

Que dire de $A \in \mathcal{S}_n(\mathbb{R})$ telle que $A^3 - 2A^2 + 3A = 0$?

Exercice 16

Soit E un espace euclidien de dimension n et f un endomorphisme symétrique défini positif de E. Démontrer que pour tout x, y dans E on a:

$$\left|\left\langle x,y\right\rangle \right|^{2}\leqslant\left\langle x,f(x)\right\rangle \left\langle y,f^{-1}(y)\right\rangle .$$

Exercice 17

Soit E un espace euclidien de dimension n et f un endomorphisme symétrique positif de E.

- 1. Pour λ réel et $x \in E$, calculer $\langle f(x + \lambda f(x)), x + \lambda f(x) \rangle$.
- 2. En déduire que pour tout x dans E on a : $||f(x)||^4 \le \langle f(x), x \rangle \langle f^2(x), f(x) \rangle$.

Exercice 18

Soit E un espace vectoriel euclidien, $f \in \mathcal{L}(E)$. Montrer qu'il existe une base (e_1, \ldots, e_n) de E telle que la famille $(f(e_1), \ldots, f(e_n))$ soit orthogonale.

Exercice 19

Soit E un espace euclidien et p un projecteur de E. Démontrer que p est un projecteur orthogonal si et seulement si p est un endomorphisme symétrique.

Exercice 20 (CCP) Si
$$P \in \mathbb{R}_n[X]$$
, on pose $\Phi(P) = \sum_{k=0}^n \left(\int_0^1 t^k P(t) dt \right) X^k$.

- 1. Montrer que Φ est un endomorphisme de $\mathbb{R}_n[X]$. Déterminer $\ker \Phi$.
- 2. Écrire la matrice M de Φ dans la base canonique de $\mathbb{R}_n[X]$. Justifier que M est diagonalisable.
- 3. Soit $U = {}^{t}(u_0, \dots, u_n) \in \mathcal{M}_{n+1,1}(\mathbb{R})$. Montrer que ${}^{t}UMU = \int_0^1 \left(\sum_{k=0}^n u_k t^k\right)^2 dt$. En déduire que toutes les valeurs propres de M sont strictement positives.
- 4. Montrer que la plus petite valeur propre de M tend vers zéro quand n tend vers l'infini.

Exercice 21

Dans tout l'exercice, n désigne un entier naturel non nul.

On se place dans un espace euclidien E de dimension n et on note $\mathcal{B} = (e_1, e_2, \ldots, e_n)$ une base orthonormale de E.

1. L'adjoint u^{\star} d'un endomorphisme u de E

Dans cette question u désigné un endomorphisme de E. On se propose de montrer qu'il existe un unique endomorphisme de E, noté u^* , qui à tout vecteur y de E associe le vecteur $u^*(y)$ vérifiant :

$$\forall x \in E, \ \langle u(x), y \rangle = \langle x, u^{\star}(y) \rangle$$

- a) Montrer que si u^* existe, alors on a, pour tout y de $E: u^*(y) = \sum_{i=1}^n \langle u(e_i), y \rangle e_i$.
- b) En déduire que si u^* existe, alors u^* est unique.
- c) Vérifier que l'application u^* définie par l'égalité établie à la question 1a est effectivement un endomorphisme de E.
- d) Conclure que cette application est solution du problème posé, c'est-à-dire que c'est l'unique endomorphisme de E, appelé adjoint de u, vérifiant :

$$\forall (x,y) \in E^2, \langle u(x), y \rangle = \langle x, u^*(y) \rangle$$

2. Endomorphismes normaux

Soit u un endomorphisme de E. On dit que u est un endomorphisme normal quand on a l'égalité :

$$u \circ u^* = u^* \circ u$$

a) Soit f un endomorphisme symétrique de E. Donner son adjoint et vérifier que f est normal.

Dans la suite, u désigne un endomorphisme normal.

- b) Montrer que : $\forall x \in E, \|u(x)\| = \|u^{\star}(x)\|$ et en déduire que $\operatorname{Ker}(u) = \operatorname{Ker}(u^{\star})$.
- c) Montrer que si F est un sous-espace vectoriel de E stable par u, alors F^{\perp} est stable par u^{\star} .
- d) On suppose que u possède une valeur propre λ et on note E_{λ} le sous espace propre associé. Montrer que E_{λ} est stable par u^* et en déduire que E_{λ}^{\perp} est stable par u.

Exercice 22

Soit $A \in S_n^{++}(\mathbb{R})$.

- 1. Démontrer qu'il existe une matrice $B \in S_n^{++}(\mathbb{R})$ telle que $B^2 = A$.
- 2. Soient B et C dans $S_n^{++}(\mathbb{R})$ telles que $B^2 = C^2 = A$.
 - a) Justifier l'existence de deux matrices P et Q inversibles et de deux matrices diagonales D et Δ telles que :

$$A = PD^{2t}P = Q\Delta^{2t}Q.$$

- b) En déduire l'existence d'une matrice inversible R telle que $RD^2 = \Delta^2 R$. Établir l'égalité : $RD = \Delta R$. On pourra comparer les coefficients de ligne i et de colonne j $(1 \le i, j \le n)$ de ces deux matrices.
- c) Conclure qu'il existe une unique racine carrée de A dans $S_n^{++}(\mathbb{R})$, que l'on notera \sqrt{A} .
- 3. Une application: la décomposition polaire dans $GL_n(\mathbb{R})$ Soit $M \in GL_n(\mathbb{R})$.
 - a. Montrer que ${}^t\!MM \in S_n^{++}(\mathbb{R})$. En déduire qu'il existe une matrice symétriques $S_n^{++}(\mathbb{R})$ telle que ${}^t\!MM = S^2$.
 - b. Démontrer qu'il existe un unique couple (O, S) avec $O \in O_n(\mathbb{R})$ et $S \in S_n^{++}(\mathbb{R})$ tel que M = OS.

Exercice 23

Soit $A \in S_n(\mathbb{R})$.

- 1. Démontrer que $A \in S_n^+(\mathbb{R})$ si et seulement si il existe $M \in \mathcal{M}_n(\mathbb{R})$ telle que $A = {}^t M M$.
- 2. Démontrer que $A \in S_n^{++}(\mathbb{R})$ si et seulement si il existe $M \in \mathcal{M}_n(\mathbb{R})$ inversible telle que $A = {}^t MM$.

Exercice 24

Soient E un espace euclidien et f un endomorphisme symétrique de E. On note λ_{max} la valeur propre de f de plus grande valeur absolue. Démontrer que :

$$|\lambda_{max}| = \max\left\{ \left| \frac{\langle f(x), x \rangle}{\|x\|^2} \right| \mid x \in E \setminus \{0\} \right\} = \max\left\{ \frac{\|f(x)\|}{\|x\|} \mid x \in E \setminus \{0\} \right\}.$$

Exercice 25 (Egalités de Courant-Fischer.)

Soient E un espace vectoriel euclidien de dimension $n \ge 1$, $\mathcal{G}(p)$ l'ensemble des sous-espaces de dimension p de E pour $p \in \{1...n\}$. Soit u dans $\mathcal{L}(E)$, symétrique, de valeurs propres $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n$. Pour F sous-espace vectoriel de E, on désigne par S_F l'ensemble des vecteur de F de norme 1. On souhaite démontrer que pour tout $k \in \{1, ..., n\}$ on a :

$$\lambda_k = \sup_{F \in \mathcal{G}(k)} \left(\inf_{x \in S_F} \langle u(x), x \rangle \right) = \inf_{F \in \mathcal{G}(n-k+1)} \left(\sup_{x \in S_F} \langle u(x), x \rangle \right).$$

Soit $\beta = (e_1, \dots, e_n)$ une base orthonormée de E telle que pour $i \in \{1, \dots, n\}$, e_i est un vecteur propre de u associé à λ_i .

- 1. Justifier de l'existence de β .
- 2. Soit $k \in \{1, \ldots, n\}$. On pose $F_k = \text{vect}(e_1, \ldots, e_k)$.
 - a) Démontrer que pour tout x dans F_k de norme 1 on a : $\langle u(x), x \rangle \geqslant \lambda_k$.
 - b) En déduire que $\lambda_k \leqslant \sup_{F \in \mathcal{G}(k)} \left(\inf_{x \in S_F} \langle u(x), x \rangle \right)$.
- 3. Soit $k \in \{1, ..., n\}$. On pose $G_k = \text{vect}(e_k, ..., e_n)$.
 - a) Soit F un sous-espace vectoriel de E de dimension k. Justifier que $\dim(F \cap G_k) \geqslant 1$.
 - b) En déduire que $\lambda_k \geqslant \sup_{F \in \mathcal{G}(k)} \left(\inf_{x \in S_F} \langle u(x), x \rangle \right)$.
- 4. Démontrer que pour tout $k \in \{1, \dots, n\}$ on a : $\lambda_k = \inf_{F \in \mathcal{G}(n-k+1)} \left(\sup_{x \in S_F} \langle u(x), x \rangle \right)$
- 5. Soit $k \in \{1, ..., n\}$. Démontrer que l'application $v \mapsto \lambda_k(v)$ (k-ième valeur propre de v dans l'ordre décroissant) est continue de l'espace des endomorphismes symétriques $\mathcal{S}(E)$ de E dans \mathbb{R} .

4