Feuille d'exercices n° 11. Séries entières. Quelques corrections

Exercice 1

Déterminer le rayon de convergence des séries entières suivantes.

$$1. \sum \frac{(n!)^2}{(2n)!} z^n.$$

$$2. \sum n^{(-1)^n} z^n.$$

3.
$$\sum \cos(n) z^n.$$

4.
$$\sum n^k z^n$$
 où $k \in \mathbb{N}$.

$$5. \sum \frac{n!}{n^n} z^n.$$

$$6. \sum \frac{\sin n}{n} z^n.$$

Exercice 2

- 1. Soit $(a_n)_{n\in\mathbb{N}}$ une suite bornée telle que la série $\sum a_n$ diverge. Quel est le rayon de convergence de la série entière $\sum a_n z^n$? Justifier.
- 2. Quel est le rayon de convergence de la série entière $\sum_{n>1} (\sqrt{n})^{(-1)^n} \ln \left(1 + \frac{1}{\sqrt{n}}\right) z^n$?

Exercice 3

Exercice 3 Soit (a_n) une suite dans \mathbb{R} telle que $a_n > 0$ pour tout $n \in \mathbb{N}$ et $\frac{a_{n+2}}{a_n} \xrightarrow{+\infty} 3$.

Déterminer le rayon de convergence de la série entière $\sum a_n z^n$.

Exercice 4

Soit (a_n) une suite de nombres complexes non nuls telle que la suite $\left(\left|\frac{a_{n+1}}{a_n}\right|\right)$ admette une limite.

- 1. Démontrer que les séries entières $\sum a_n x^n$ et $\sum (n+1)a_{n+1}x^n$ ont même rayon de convergence.
- 2. Démontrer que la fonction $f: x \mapsto \sum_{n=0}^{+\infty} a_n x^n$ est de classe C^1 sur]-R, R[.

Exercice 5

Soit f une fonction continue sur \overline{D} où $D=D(0,1)\subset\mathbb{C}$. On suppose que les a_n sont des réels positifs et que pour tout $z \in D$, $f(z) = \sum_{n=0}^{+\infty} a_n z^n$.

Montrer que la série $\sum_{n>0}^{\infty} a_n$ converge de somme f(1).

• Soit
$$n \in \mathbb{N}$$
. Pour tout $x \in [0,1[$ on a $\sum_{k=0}^{n} a_k x^k \leqslant \sum_{k=0}^{+\infty} a_k x^k = f(x)$.

On fait tendre x vers 1 dans les deux membres de cette inégalité pour obtenir, par continuité de la fonction f sur [0,1]:

$$\sum_{k=0}^{n} a_k \leqslant f(1).$$

Ceci étant valable pour tout $n \in \mathbb{N}$, les sommes partielles de **la série à termes positifs** $\sum a_k$ sont majorées par f(1): cette série est convergente et on a : $\sum_{k=0}^{+\infty} a_k \leqslant f(1)$.

• Pour tout
$$x \in [0,1[$$
, on $a:f(x)=\sum_{k=0}^{+\infty}a_kx^k\leqslant \sum_{k=0}^{+\infty}a_k$. Ainsi $(x\to 1)$ donne $:f(1)\leqslant \sum_{k=0}^{+\infty}a_k$.

Exercice 6

La fonction arcsin est-elle développable en série entière au voisinage de 0?

Exercice 7

Trouver par deux méthodes la solution de l'équation différentielle (E) $y'=x^2+y$ telle que f(0)=0

Exercice 8

Déterminer le rayon de convergence de la série entière $\sum \frac{x^n}{(2n)!}$ et trouver sa fonction somme.

• Pour x non nul on pose $u_n = \frac{x^n}{(2n)!} \neq 0$. On a alors :

$$\frac{|u_{n+1}|}{|u_n|} = \frac{|x|}{(2n+1)(2n+2)} \xrightarrow[+\infty]{} 0.$$

Ainsi la série $\sum u_n$ est absolument convergente et le rayon de la série entière $\sum \frac{x^n}{(2n)!}$ est $R = +\infty$: notons f sa somme.

• Si
$$x \ge 0$$
 alors $f(x) = \sum_{n=0}^{+\infty} \frac{(\sqrt{x})^{2n}}{(2n)!} = \operatorname{ch} \sqrt{x}$.

• Si
$$x \le 0$$
 alors on a $f(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{(\sqrt{-x})^{2n}}{(2n)!} = \cos \sqrt{-x}$.

Exercice 9

- 1. Que peut-on dire du rayon de convergence de la somme de deux séries entières?
- 2. Développer en série entière au voisinage de 0, en précisant le rayon de convergence, la fonction

$$f: x \mapsto \ln(1+x) + \ln(1-2x)$$
.

La série obtenue converge-t-elle pour $x = \frac{1}{4}$? $x = -\frac{1}{2}$? $x = \frac{1}{2}$?.

1. Soient $\sum a_n z^n$ une série entière de rayon de convergence R_a et $\sum b_n z^n$ une série entière de rayon de convergence R_b . Alors la série entière $\sum (a_n + b_n) z^n$ a un rayon de convergence $R \ge \min(R_a, R_b)$ avec égalité dès que $R_a \ne R_b$.

2

2. On a:

•
$$\ln(1+x) = \sum_{k=0}^{+\infty} (-1)^k \frac{x^{k+1}}{k+1}$$
 pour $|x| < 1$.

•
$$\ln(1-2x) = -\sum_{k=0}^{+\infty} \frac{(2x)^{k+1}}{k+1}$$
 pour $|x| < \frac{1}{2}$.

Ainsi pour tout x tel que $|x| < \frac{1}{2}$, il vient : $f(x) = \sum_{k=1}^{+\infty} \frac{(-1)^{k-1} - 2^k}{k} x^k$.

D'après la première question le rayon de convergence est $R = \frac{1}{2}$

Pour $x = \frac{1}{4}$, la série obtenue est absolument convergente donc convergente car $\left| \frac{1}{4} \right| < R$.

Pour $x = \frac{1}{2}$ la série numérique $\sum_{k>1} \frac{(-1)^{k-1} - 2^k}{k} x^k$ est divergente comme somme d'une série convergente (celle issue de $\ln(1+x)$) et d'une série divergente (celle issue de $\ln(1-2x)$). Pour $x=-\frac{1}{2}$ la série numérique $\sum_{k\geqslant 1}\frac{(-1)^{k-1}-2^k}{k}x^k$ est convergente comme somme de deux séries convergente (celle issue de ln(1+x) et une série alternée.)

Exercice 10

Développer en série entière au voisinage de 0 les fonctions suivantes.

1.
$$f: x \mapsto \ln(1 + x + x^2)$$

1.
$$f: x \mapsto \ln(1+x+x^2)$$

2. $g: x \mapsto \frac{1}{1+x+x^2+x^3+x^4}$.

1. Pour $x \neq 1$ on $a: 1+x+x^2 = \frac{1-x^3}{1-x}$. Ainsi pour $x \in]-1,1[$ il vient, comme $\ln(1-x) = -\sum_{n=1}^{+\infty} \frac{x^n}{n}$ et que $|x^3| < 1$:

$$\begin{aligned} \ln(1+x+x^2) &= & \ln(1-x^3) - \ln(1-x) \\ &= & -\sum_{n=1}^{+\infty} \frac{x^{3n}}{n} + \sum_{n=1}^{+\infty} \frac{x^n}{n} \\ &= & \sum_{n=1}^{+\infty} a_n x^n \text{ où } a_n = \begin{cases} \frac{1}{n} - \frac{3}{n} & \text{si } n \text{ multiple de } 3\\ \frac{1}{n} & \text{sinon} \end{cases} \end{aligned}$$

2. Pour $x \in]-1,1[$ on a $1+x+x^2+x^3+x^4=\frac{1-x^5}{1-x}$ donc :

$$\frac{1}{1+x+x^2+x^3+x^4} = \frac{1-x}{1-x^5} = (1-x)\sum_{k=0}^{+\infty} x^{5k} = \sum_{k=0}^{+\infty} x^{5k} - \sum_{k=0}^{+\infty} x^{5k+1}$$

$$= \sum_{k=1}^{+\infty} a_k x^k \text{ où } a_k = \begin{cases} 1 & \text{si } k \equiv 0 \text{ [5]} \\ -1 & \text{si } k \equiv 1 \text{ [5]} \\ 0 & \text{sinon} \end{cases}$$

3

On considère $\sum a_n z^n$ une série entière de rayon de convergence infini de fonction somme f.

1. Démontrer que pour tout r > 0 et $n \in \mathbb{N}$ on a : $\int_0^{2\pi} f(re^{i\theta})e^{-in\theta} d\theta = 2\pi a_n r^n$.

2. On suppose que, pour un certain $k \in \mathbb{N}$, il existe des réels strictement positifs α_k et β_k tels que :

$$(\forall z \in \mathbb{C})(|f(z)| \leq \alpha_k |z|^k + \beta_k.$$

Que dire de f?

1. Soit $n \in \mathbb{N}$. On a :

$$\int_0^{2\pi} f(re^{i\theta}) e^{-in\theta} d\theta = \int_0^{2\pi} \sum_{p=0}^{+\infty} a_p r^p e^{ip\theta} e^{-in\theta} d\theta = \int_0^{2\pi} \sum_{p=0}^{+\infty} a_p r^p e^{i(p-n)\theta} d\theta$$

Mais pour tout $p \in \mathbb{N}$ et tout θ dans $[0, 2\pi]$ on a : $\left|a_p r^p \mathrm{e}^{i(p-n)\theta}\right| \leqslant |a_p| \, r^p$. Comme la série $\sum_{p\geqslant 0} |a_p| \, r^p$ converge puisque r < R, la série de fonction $\sum_{p>0} a_p r^p \mathrm{e}^{i(p-n)\theta}$ converge

normalement donc uniformément en θ sur $[0, 2\pi]$. On peut alors intervertir les symboles \int et \sum . Il vient:

$$\int_0^{2\pi} f(re^{i\theta})e^{-in\theta} d\theta = \sum_{p=0}^{+\infty} a_p r^p \underbrace{\left(\int_0^{2\pi} e^{i(p-n)} d\theta\right)}_{=2\pi\delta_p^n}$$
$$= 2\pi a_n r^n$$

2. D'après la question précédente on a, pour tout $r \in \mathbb{R}^+$ et $n \in \mathbb{N}$, on a : $a_n r^n = \frac{1}{2\pi} \int_0^{2\pi} f(re^{i\theta}) e^{-in\theta} d\theta$. Fixons provisoirement $n \in \mathbb{N}$ et $r \in \mathbb{R}$. On a alors :

$$|a_n| r^n \leqslant \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})| d\theta \leqslant \frac{1}{2\pi} \int_0^{2\pi} \alpha_k r^k + \beta_k d\theta = \alpha_k r^k + \beta_k.$$

Cette dernière inégalité est valable pour tout $n \in \mathbb{N}$ et $r \in \mathbb{R}^+$. Si n > k on a donc, pour tout

$$|a_n| \leqslant \alpha_k r^{k-n} + \beta_k r^{-n} \underset{r \to +\infty}{\longrightarrow} 0.$$

Ainsi $a_n = 0$ pour tout n > k : f est une fonction polynôme

Soit $\sum a_n z^n$ une série entière de rayon de convergence R=1, et f sa fonction somme.

- 1. Démontrer que pour tout $r \in]0,1[$ on a : $\int_0^{2\pi} \left| f(re^{i\theta}) \right|^2 d\theta = 2\pi \sum_{n=0}^{+\infty} \left| a_n \right|^2 r^{2n}.$
- 2. En déduire que si f est bornée alors la série $\sum |a_n|^2$ est convergente.

Exercice 13 Soit $\sum a_n z^n$ une série entière de rayon de convergence R>0, et f sa fonction somme. Pour $r\in]0,R[$ et Zcomplexe tel que |Z| < r on pose :

$$I(r) = \frac{1}{2\pi} \int_0^{2\pi} \frac{r e^{i\theta} f(r e^{i\theta})}{r e^{i\theta} - Z} d\theta$$

Démontrer que f(Z) = I(r).

Exercice 14

On considère une série entière $\sum_{n>0} \frac{a_n}{n!} z^n$, une série entière de rayon de convergence infini de fonction somme f,

telle que f(0) = 1. On suppose que $a_n \in \{-1, 1\}$, pour tout $n \in \mathbb{N}^*$, et $|f^{(p)}(x)| \leq 1$ pour tout $p \in \mathbb{N}$ et $x \geq 0$. Déterminer f.

• Supposons un instant qu'il existe $p \in \mathbb{N}$ tel que $a_p = a_{p+1}$. La fonction f est C^{∞} et on a, pour $x \geqslant 0$ réel :

$$f^{(p)}(x) = \sum_{n=0}^{+\infty} \frac{a_{n+p}}{n!} x^n = a_p + a_{p+1}x + x \sum_{n=2}^{+\infty} \frac{a_{n+p}}{n!} x^{n-1}.$$

Comme $\lim_{x\to 0} \varepsilon(x) = 0$, il existe A > 0 réel tel que pour tout $x \in [0, A]$ on ait : $|\varepsilon(x)| \leq \frac{1}{2}$.

Soit $x \in]0, A]$. On a alors $-\frac{x}{2} \leqslant x\varepsilon(x) \leqslant \frac{x}{2}$. Envisageons deux cas.

• Cas 1. On suppose $a_p = a_{p+1} = 1$. Il vient alors :

$$1 + \frac{x}{2} \leqslant f^{(p)}(x) \leqslant 1 + \frac{3x}{2}.$$

Ainsi $|f^{(p)}(x)| > 1$, ce qui est absurde.

• Cas 2. On suppose $a_p = a_{p+1} = -1$. Il vient alors :

$$-1 - \frac{3x}{2} \leqslant f^{(p)}(x) \leqslant -1 - \frac{x}{2}.$$

On retrouve la stupidité $|f^{(p)}(x)| > 1$.

• Selon ce qui précède, pour tout $n \in \mathbb{N}$, on a $a_{n+1} = -a_n$. Comme $a_0 = 1$ (puisque f(0) = 1) on peut donc dire que $f(z) = e^{-z}$ pour tout $z \in \mathbb{C}$.

Exercice 15

Soient D le disque unité ouvert dans \mathbb{C} et $f:\overline{D}\to\mathbb{C}$, continue, telle que $f(z)=\sum_{n=0}^{+\infty}a_nz^n$ pour z dans D.

On suppose que $\exists \lim_{n \to +\infty} na_n = 0$. Montrer que la série $\sum_{n \geqslant 0} a_n$ converge de somme f(1) (c'est une théorème de TAUBER).

Aide : on pourra considérer les suites $x_N = 1 - \frac{1}{N}$ et $v_N = \sum_{n=0}^{+\infty} a_n x_N^n - \sum_{n=0}^{N} a_n$.

• Pour
$$N \ge 2$$
 on pose : $x_N = 1 - \frac{1}{N}$ et $v_N = \sum_{n=0}^{+\infty} a_n x_N^n - \sum_{n=0}^{N} a_n$.

Par continuité de f on a $f(x_N) \xrightarrow[+\infty]{} f(1)$ i.e. $\lim_{N \to \infty} \sum_{n=0}^{+\infty} a_n x_N^n = f(1)$. On veut donc montrer que :

$$\exists \lim_{N \to +\infty} v_N = 0.$$

• Pour $N \geqslant 2$ on a :

$$v_N = \sum_{n=N+1}^{+\infty} a_n x_N^n - \sum_{n=0}^{N} a_n (1 - x_N^n).$$

Mais on a:

$$\left| \sum_{n=N+1}^{+\infty} a_n x_N^n \right| = \left| \sum_{n=N+1}^{+\infty} n a_n \frac{x_N^n}{n} \right|$$

$$\leqslant \mu_N \sum_{n=N+1}^{+\infty} \frac{x_N^n}{n} \text{ où } \mu_N = \sup_{n>N} |n a_n| \xrightarrow{+\infty} 0$$

$$\leqslant \frac{\mu_N}{N} \sum_{n=N+1}^{+\infty} x_N^n \leqslant \frac{\mu_N}{N} \times \frac{1}{1 - x_N}$$

$$\leqslant \mu_N$$

Puis si $1 \le n \le N$ on a : $1 - x_N^n = (1 - x_N)(1 + x_N + \dots + x_N^{n-1}) \le n(1 - x_N) \le \frac{n}{N}$ donc il vient :

$$\left|\sum_{n=0}^N a_n(1-x_N^n)\right|\leqslant \frac{1}{N}\left(\sum_{n=0}^N |na_n|\right)\xrightarrow[+\infty]{}0 \ \ (\text{via le th\'eor\`eme de C\'esaro})$$

ce qui prouve le résultat souhaité.