Feuille d'exercices n° 5. Réduction. Quelques corrections

Avertissement. Dans toute cette feuille d'exercice, $\mathbb K$ désigne $\mathbb R$ ou $\mathbb C$.

Exercice 1 Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est $A = \begin{pmatrix} 1 & -12 & 2 \\ 1 & 1 & 1 \\ 4 & 8 & 3 \end{pmatrix}$. Déterminer les valeurs propres de f. L'endomorphisme f est-il diagonalisable?

Exercice 2

Donner dans chacun des cas un exemple d'endomorphisme f vérifiant les propriétés suivante :

- 1. f est non diagonalisable et non inversible.
- 2. f est diagonalisable et non inversible.
- 3. f est non diagonalisable et inversible.
- 4. f est diagonalisable et inversible.

Exercice 3

On considère un entier $n \ge 2$ ainsi que les matrices $A = [a_{i,j}]$ et $B = [b_{i,j}]$ dans $\mathcal{M}_n(\mathbb{R})$ telles que $a_{1,1} = 1$, $a_{i,j} = 0$ si $(i,j) \ne (1,1)$, $b_{2,1} = 1$ et $b_{i,j} = 0$ si $(i,j) \ne (2,1)$.

- 1. Trouver un polynôme P de degré minimal qui annule A. Trouver un polynôme Q de degré minimal qui annule B.
- 2. Les matrices A et B sont-elles semblables?
- 3. Existe-t-il $R \in \mathbb{R}[X]$ tel que B = R(A)?
- 4. Existe-t-il $R \in \mathbb{R}[X]$ tel que B et R(A) soient semblables?

Exercice 4

Soit n un entier naturel tel que n > 2. Soit E l'espace vectoriel des polynômes à coefficients dans \mathbb{K} ($\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$) de degré inférieur ou égal à n. On pose : $\forall P \in E, f(P) = P - P'$.

- 1. Démontrer que f est bijectif de deux manières :
 - (a) sans utiliser de matrice de f,
 - (b) en utilisant une matrice de f.
- 2. Soit $Q \in E$: Trouver P tel que f(P) = Q. Indication: si $P \in E$, quel est le polynôme $P^{(n+1)}$?
- 3. f est-il diagonalisable?

Exercice 5 Soit la matrice $M = \begin{pmatrix} 0 & a & c \\ b & 0 & c \\ b & -a & 0 \end{pmatrix}$ où a, b et c sont des réels.

Cette matrice est-elle diagonalisable dans $M_3(\mathbb{R})$? M est-elle diagonalisable dans $M_3(\mathbb{C})$?

1

On trouve rapidement $\chi_M = X(X^2 - \alpha)$ où $\alpha = -ca + ba + bc$. On regarde alors les cas suivants :

- Cas 1: $\alpha > 0$. Alors $M \in M_3(\mathbb{R})$ admet trois valeurs propres distinctes : elle est diagonalisable sur \mathbb{R} , donc sur \mathbb{C} .
- Cas 2 : $\alpha < 0$. Dans ce cas, M n'est pas diagonalisable sur IR puisque χ_M n'est pas scindé sur IR. Mais χ_M est scindé sur $\mathbb C$ à racines simples : elle est diagonalisable sur $\mathbb C$.
- Cas 3 : $\alpha = 0$. Dans ce cas, M n'admet qu'une seule valeur propre qui est 0 : si elle est diagonalisable sur IR (ou \mathbb{C}), elle est semblable à la matrice nulle, donc est nulle, d'où a = b = c = 0 et M est la matrice nulle.

Ainsi M est diagonalisable sur $\mathbb R$ ou $\mathbb C$ si et seulement si M est la matrice nulle.

Exercice 6 On considère la matrice $A = \begin{pmatrix} 0 & a & 1 \\ a & 0 & 1 \\ a & 1 & 0 \end{pmatrix}$, où a est un réel.

- 1. Déterminer le rang de A.
- 2. Pour quelles valeurs de a, la matrice A est-elle diagonalisable?

Exercice 7 Soit la matrice $A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{C}).$

- 1. Déterminer les valeurs propres et les vecteurs propres de A. A est-elle diagonalisable?
- 2. Soit $(a, b, c) \in \mathbb{C}^3$ et $B = aI_3 + bA + cA^2$, où I_3 désigne la matrice identité d'ordre 3. Déduire de la question 1 les éléments propres de B.
 - 1. On trouve de suite que le polynôme caractéristique de A est : $\chi_A = X^3 1$. Ainsi le spectre de A est : $\{1, j, j^2\}$. Ainsi $A \in M_3(\mathbb{C})$ admet trois valeurs propres distinctes : elle est diagonalisable et chaque sous-espace propre est une droite.
 - On a $A-I=\begin{pmatrix} -1 & 0 & 1\\ 1 & -1 & 0\\ 0 & 1 & -1 \end{pmatrix}$ qui est de rang 2 puisque $\ker(A-I)$ est une droite. Comme $C_1+C_2+C_3=0$, où C_1 , C_2 et C_3 sont les colonnes de A-I, on a $\ker(A-I)=\det\begin{pmatrix} 1\\1\\1 \end{pmatrix}$.
 - On a $A-jI=\begin{pmatrix} -j & 0 & 1\\ 1 & -j & 0\\ 0 & 1 & -j \end{pmatrix}$ qui est de rang 2 puisque $\ker(A-jI)$ est une droite. Comme $j^2C_1+jC_2+C_3=0$, où C_1 , C_2 et C_3 sont les colonnes de A-jI, on a $\ker(A-jI)=\det\begin{pmatrix} \binom{j^2}{j}\\ 1 \end{pmatrix}$.
 - On a $A j^2I = \begin{pmatrix} -j^2 & 0 & 1 \\ 1 & -j^2 & 0 \\ 0 & 1 & -j^2 \end{pmatrix}$ qui est de rang 2 puisque $\ker(A j^2I)$ est une droite. Comme $jC_1 + j^2C_2 + C_3 = 0$, où C_1 , C_2 et C_3 sont les colonnes de $A j^2I$, on a $\ker(A j^2I) = \operatorname{vect}\left(\begin{pmatrix} j \\ j^2 \\ 1 \end{pmatrix}\right)$.

2. La question précédente assure que
$$A = PDP^{-1}$$
 avec $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & j & 0 \\ 0 & 0 & j^2 \end{pmatrix}$ et $P = \begin{pmatrix} 1 & j^2 & j \\ 1 & j & j^2 \\ 1 & 1 & 1 \end{pmatrix}$.

Puis B = Q(A) où $Q = a + bX + cX^2$. Ainsi on obtient très vite :

$$B = PQ(D)P^{-1}$$

Il en résulte que B est diagonalisable et que les valeurs propres de B (dont certaines peuvent être égale) sont Q(1), Q(j) et $Q(j^2)$.

On envisage alors les cas suivants :

— Q(1), Q(j) et $Q(j^2)$ sont distincts deux à deux. Ainsi les sous-espaces propres associés à B sont distincts et :

$$- \ker(B - Q(1)I) = \operatorname{vect} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
$$- \ker(B - Q(j)I) = \operatorname{vect} \begin{pmatrix} j^2 \\ j \\ 1 \end{pmatrix}$$
$$- \ker(B - Q(j^2)I) = \operatorname{vect} \begin{pmatrix} j \\ j^2 \\ 1 \end{pmatrix}$$

- Q(1), Q(j) et $Q(j^2)$ sont tous égaux. Alors $B = Q(1)I_3$ et $\ker(B Q(1)I) = \mathcal{M}_{3,1}(\mathbb{C})$.
- Deux parmi les valeurs Q(1), Q(j) et $Q(j^2)$ sont égales, la troisième étant distinctes. Par exemple $Q(1) = Q(j^2) \neq Q(j)$. Alors le spectre de B est $\{Q(1), Q(j)\}$ et :

$$\ker(B - Q(1)) = \operatorname{vect}\left(\begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} j\\j^2\\1 \end{pmatrix}\right), \ \ker(B - Q(j)) = \operatorname{vect}\left(\begin{pmatrix} j^2\\j\\1 \end{pmatrix}\right)$$

Les autres cas sont pour le lecteur.

Evercice 8

On considère la matrice $A = \begin{pmatrix} 2 & 1 \\ 4 & -1 \end{pmatrix}$.

- 1. Déterminer les valeurs propres et les vecteurs propres de A.
- 2. Déterminer toutes les matrices qui commutent avec la matrice $B = \begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}$. En déduire que l'ensemble des matrices qui commutent avec A est $\text{vect}(I_2, A)$.
 - 1. On a $\chi_A = A^2 \operatorname{tr}(A)X + \det A = X^2 X 6 = (X+2)(X-3)$. Ainsi A admet deux valeurs propres distinctes : elle est diagonalisable et ses sous-espaces propres sont des droites vectorielles.

3

• On a
$$A - 3I = \begin{pmatrix} -1 & 1 \\ 4 & -4 \end{pmatrix}$$
 donc $\ker(A - 3I) = \operatorname{vect}\left(\begin{pmatrix} 1 \\ 1 \end{pmatrix}\right)$.

• On a
$$A + 2I = \begin{pmatrix} 4 & 1 \\ 4 & 1 \end{pmatrix}$$
 donc $\ker(A + 2I) = \operatorname{vect}\left(\begin{pmatrix} 1 \\ -4 \end{pmatrix}\right)$.

2. • Soit $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$. On a les équivalences :

$$MB = BM \Leftrightarrow \begin{pmatrix} 3a & -2b \\ 3c & -2d \end{pmatrix} = \begin{pmatrix} 3a & 3b \\ -2c & -2d \end{pmatrix} \Leftrightarrow b = c = 0$$

Il en résulte que l'ensemble des matrices qui commutent avec B est le sous-espace vectoriel $F = \text{vect}\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right)$.

• Soit c(A) l'ensemble des matrices qui commutent avec A. On a de suite $\text{vect}(I_2, A) \subset c(A)$.

Puis la question précédente assure que $A = PBP^{-1}$ avec $P = \begin{pmatrix} 1 & 1 \\ 1 & -4 \end{pmatrix}$. Ainsi on a pour $M \in M_2(\mathbb{R})$:

$$M \in c(A) \Leftrightarrow MPBP^{-1} = PBP^{-1}M \Leftrightarrow P^{-1}MPB = BP^{-1}MP \Leftrightarrow P^{-1}MP \in F.$$

Mais $M \mapsto P^{-1}MP$ est un isomorphisme linéaire de $\mathcal{M}_2(\mathbb{R})$ donc F et c(A) ont la même dimension qui est 2. Comme $\text{vect}(I_2, A) \subset c(A)$, il vient c(A) = vect(I, A).

Exercice 9

Soit n un entier naturel non nul. Soit f un endomorphisme d?un espace vectoriel E de dimension n, et soit $\beta = (e_1, \ldots, e_n)$ une base de E. On suppose que $f(e_1) = f(e_2) = \ldots = f(e_n) = v$, où v est un vecteur donné de E.

- 1. Donner le rang de f.
- 2. f est-il diagonalisable? (discuter en fonction du vecteur v)

Exercice 10

Soit E un espace vectoriel sur \mathbb{R} ou \mathbb{C} . Soit $f \in L(E)$ tel que $f^2 - f - 2\mathrm{Id} = 0$.

- 1. Prouver que f est bijectif et exprimer f^{-1} en fonction de f.
- 2. Prouver que $E = \ker(f + \operatorname{Id}) \oplus \ker(f 2\operatorname{Id})$.
- 3. Dans cette question, on suppose que E est de dimension finie.
 - a) f est-il diagonalisable?
 - b) Prouver que Im $(f + Id) = \ker(f 2Id)$.
 - 1. Déjà fait mille fois : on n'oublie pas les deux sens puisque l'on est en dimension quelconque.
 - 2. Par analyse/synthèse, sans souci. Noter que le fait que la somme soit directe est une conséquence du cours.
 - 3. a) $P = X^2 X 2 = (X + 1)(X 2)$ est un polynôme annulateur de f qui est scindé à racines simples : f est donc diagonalisable.
 - b) Soit $y \in \text{Im } (f + \text{Id})$. Il existe donc $x \in E$ tel que f(x) + x = y. Il vient alors :

$$(f - 2Id)(y) = f^{2}(x) + f(x) - 2f(x) - 2x = f^{2}(x) - f(x) - 2x = 0$$

Ainsi $y \in \ker(f - 2\mathrm{Id})$. On a donc montré que : $\mathrm{Im}\,(f + \mathrm{Id}) \supset \ker(f - 2\mathrm{Id})$.

• Avec la question 2 et le théorème du rang on a :

$$\begin{cases} \dim E = \dim \ker(f + \mathrm{Id}) + \dim \ker(f - 2\mathrm{Id}) \\ \dim E = \dim \ker(f + \mathrm{Id}) + \dim \operatorname{Im}(f + \mathrm{Id}) \end{cases}$$

Ainsi dim Im $(f + Id) = \dim \ker (f - 2Id)$.

L'inclusion du premier point permet de conclure que $\operatorname{Im}(f + \operatorname{Id}) = \ker(f - 2\operatorname{Id})$

Exercice 11

Exercice 11
On note I la matrice identité de $\mathcal{M}_3(\mathbb{R})$. Soit A la matrice de $\mathcal{M}_3(\mathbb{R})$ définie par : $A = \begin{pmatrix} 0 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & 1 & 0 \end{pmatrix}$.

- 1. Calculer $B = A^2 + 2I$.
- 2. Montrer que $B^2 = B + 2I$.
- 3. Déterminer les valeurs propres de B et les sous-espaces propres associés. La matrice B est-elle diagonalisable?
- 4. Vérifier que si λ est valeur propre de A alors $\lambda^2 + 2$ est valeur propre de B. En déduire que A n'est pas diagonalisable sur IR.
- 5. Démontrer que B est inversible et exprimer B^{-1} comme un polynôme en B.
- 6. On s'intéresse maintenant aux puissances de la matrice B.
 - a. Pour n entier on appelle R_n le reste de la division euclidienne de X^n par X^2-X-2 . Exprimer R_n en fonction de n.
 - b. Déterminer alors B^n pour tout $n \ge 0$ entier.

Exercice 12

Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^2 = A - I_n$. Montrer que det A = 1.

Le polynôme $P = X^2 - X + 1$ est un polynôme annulateur de A.

Soin discriminant est $\Delta = -3$. Ainsi P admet deux racines complexes qui sont $z = e^{i\pi/3}$ et \overline{z} : il est scindé à racines simples sur $\mathbb C$. Ainsi A est diagonalisable sur $\mathbb C$: sont déterminant est le produit d eses valeurs propres complexes.

Puis le polynôme caractéristique χ_A est à coefficient réel, admet une racine complexe au moins qui doit être z ou \overline{z} . En fait les deux sont racines de χ_A , puisque si ζ est une racine complexe de $Q \in \mathbb{R}[X]$, alors $\overline{\zeta}$ est aussi racine de Q. Mieux, les multiplicité de z et \overline{z} comme racines de χ_A sont les mêmes (facile). Appelons r cette multiplicité commune. Il vient alors $\det A = (z\overline{z})^r = |z|^{2r} = 1.$

Exercice 13

Soient E un espace vectoriel complexe de dimension finie $n \ge 1$, f et g dans $\mathcal{L}(E)$ tels que : [f,g] = f.

- 1. Démontrer que pour tout p entier naturel on a : $[f^p, g] = pf^p$.
- 2. En considérant l'application $\varphi = \begin{pmatrix} \mathcal{L}(E) & \longrightarrow & \mathcal{L}(E) \\ h & \longmapsto & [h,g] \end{pmatrix}$, démontrer que f est nilpotent.

Exercice 14 (Projecteurs spectraux)

Soient E un espace vectoriel sur K de dimension finie $n \geqslant 1$, f dans $\mathcal{L}(E)$ diagonalisable de valeurs propres distinctes $\lambda_1, \ldots, \lambda_k$, d'espaces propres associés E_1, \ldots, E_k .

Pour $1 \le i \le k$, le projecteur p_i de E d'image E_i et de noyau $\bigoplus_{j \ne i} E_j$ s'appelle un projecteur spectral de

f pour la valeur propre λ_i .

- 1. Démontrer que : $f = \sum_{i=1}^{k} \lambda_i p_i$, $p_i \circ p_j = 0$ lorsque $i \neq j$ et $p_1 + \dots + p_k = \mathrm{Id}_E$.
- 2. Si $P \in \mathbb{K}[X]$, exprimer simplement P(f). En déduire que chaque projecteur spectral de f est un polynôme en f.

5

Exercice 15 (Commutant : le retour!)

Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \ge 1$, $f \in \mathcal{L}(E)$. On pose : $c(f) = \{g \in \mathcal{L}(E) \mid [f,g] = 0\}$. On suppose que f admet n valeurs propres distinctes $\lambda_1, \ldots, \lambda_n$ et on note (e_1, \ldots, e_n) une base de vecteurs propres associés.

- 1. Démontrer que si $g \in \mathcal{L}(E)$ commute avec f alors pour tout i dans $\{1, \ldots, n\}$, il existe μ_i dans \mathbb{K} tel que $g(e_i) = \mu_i e_i$.
- 2. En déduire que $c(f) = \mathbb{K}_{n-1}[f]$.

Exercice 16 (Théorème de diagonalisation simultanée de Schur)

Soient E un espace vectoriel de dimension finie $n \ge 1$, f et g dans $\mathcal{L}(E)$, diagonalisables. On suppose que f et g commutent i.e. que $f \circ g = g \circ f$. On note $\lambda_1, \ldots, \lambda_p$ les valeurs propres distinctes de f ainsi que E_1, \ldots, E_p les espaces propres associés.

Démontrer que f et g sont simultanément diagonalisable i.e. possèdent une base commune de vecteurs propres.

Exercices supplémentaires

Exercice 17

Soient $n \ge 1$ entier et $A \in E = \mathcal{M}_n(\mathbb{R})$. On considère $\varphi_A : \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$ définie par $\varphi_A(M) = AM$.

- 1. Démontrer que φ_A est linéaire et montrer que $\operatorname{Spec}(A) = \operatorname{Spec}(\varphi_A)$.
- 2. Pour $\lambda \in \operatorname{Spec}(A)$, comparer les dimensions des sous-espaces propres $E_{A,\lambda} = \ker(A \lambda I)$ et $E_{\varphi_A,\lambda} = \ker(\varphi_A \lambda \operatorname{Id}_E)$
 - 1. Pour la linéarité : ...Pour l'égalité des spectres, on procède par double inclusion.
 - Soit $\lambda \in \operatorname{Spec}(A)$. Il existe alors X non nul dans $\mathcal{M}_{n,1}(\mathbb{R})$ tel que $AX = \lambda X$.

Méthode 1. On obtient donc $AX^tX = \lambda X^tX$ et en posant $M = X^tX \in \mathcal{M}_n(\mathbb{R})$, il vient $AM = \lambda M$ donc $\varphi_A(M) = \lambda M$. Comme X est non nul, M est non nulle (le détailler...) et ainsi $\lambda \in \operatorname{Spec}(\varphi_A)$.

Méthode 2. On considère la matrice M de $M_n(\mathbb{R})$ dont les n colonnes sont toutes égales à X. Il vient alors :

$$\varphi_A(M) = A \left(X \mid \dots \mid X \right) = \left(AX \mid \dots \mid AX \right) = \left(\lambda X \mid \dots \mid \lambda X \right) = \lambda M.$$

- Soit $\lambda \in \operatorname{Spec}(\varphi_A)$. Il existe alors M non nulle dans $\mathcal{M}_n(\mathbb{R})$ telle que $AM = \lambda M$. Appelons C_1, \ldots, C_n les colonnes de A. Comme A est non nulle, il existe $i \in \{1, \ldots, n\}$ tel que $C_i \neq 0$. Comme $AM = \lambda M$ il vient de suite $AC_i = \lambda C_i$ ce qui prouve que $\lambda \in \operatorname{Spec}(A)$.
- 2. Soit $\lambda \in \operatorname{Spec}(A)$. Avec les calculs précédents, on voit que si X_1, \ldots, X_n sont dans $E_{A,\lambda}$ alors la matrice $M = (X_1 \mid \cdots \mid X_n)$ est dans $E_{\varphi_A,\lambda}$. On considère alors l'application :

$$F = \left(\begin{array}{ccc} (E_{A,\lambda})^n & \longrightarrow & E_{\varphi_A,\lambda} \\ (X_1, \dots, X_n) & \longmapsto & \left(X_1 \mid \dots \mid X_n \right) \end{array} \right)$$

qui est un isomorphisme linéaire (linéaire, injectif et surjectif : à vérifier). Il en résulte que dim $E_{\varphi_{A,\lambda}} = \dim (E_{A,\lambda})^n = n \dim E_{A,\lambda}$.

Exercice 18

On considère les deux sous-espaces vectoriels F et G de \mathbb{R}^3 définis par :

$$\begin{cases} F &= \text{vect}((1,1,1)) \\ G &= \{(x,y,z) \in \mathbb{R}^3 \mid x = y - 2z = 0 \} \end{cases}$$

Trouver un endomorphisme de \mathbb{R}^3 dont le noyau est F et l'image G. Peut-on le choisir diagonalisable?

• On peut noter que G = vect((0,2,1)). On note $\varepsilon_1 = (1,1,1)$ et $\varepsilon_2 = (0,2,1)$ et on complète la famille libre $(\varepsilon_1, \varepsilon_2)$ en une base $\beta = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ de \mathbb{R}^3 . On définit alors un endomorphisme de \mathbb{R}^3 en posant :

$$\begin{cases} f(\varepsilon_1) &= 0\\ f(\varepsilon_2) &= \varepsilon_2\\ f(\varepsilon_3) &= \varepsilon_2 \end{cases}$$

de sorte que Im $f = \text{vect}(\varepsilon_2) = G$ et $\ker f = \text{vect}(\varepsilon_1) = F$.

• Soit f un tel endomorphisme. Noter que si λ est non nul alors :

$$\ker(f - \lambda \mathrm{Id}_E) \subset \mathrm{Im} f$$
.

En effet, si $x \in \ker(f - \lambda \operatorname{Id}_E)$ alors $f(x) = \lambda x$ donc $x = f(x/\lambda) \in \operatorname{Im} f$.

Ainsi on a $\ker f \oplus \sum_{\substack{\lambda \in \operatorname{Spec}(f) \\ \lambda \neq 0}} \ker(f - \lambda \operatorname{Id}_E) \subset F + G$, donc la somme des dimensions des sous-

espaces propres de f est inférieure (ou égale) à $\dim F + \dim G = 2 \neq 3$: f n'est pas diagonalisable.

Exercice 19

Soient $n \ge 1$ entier, A et B dans $\mathcal{M}_n(\mathbb{R})$, ayant chacune n valeurs propres distinctes.

Démontrer que A et B commutent si et seulement si elles sont diagonalisables avec la même matrice de passage.

C'est la traduction matricielle du théorème de diagonalisation simultanée de Schur.

Exercice 20

Soient E un \mathbb{K} -espace de dimension finie. Déterminer les $u \in \mathcal{L}(E)$ nilpotents tels que tout sous-espace stable par u admette un supplémentaire stable par u.

On va démontrer qu'il n'y a que l'endomorphisme nul qui vérifie les conditions imposées.

Le noyau d'un tel endomorphisme est stable, car $u(\ker u) = \{0\}$ est inclus dans tout sousespace vectoriel, donc dans $\ker u$ en particulier. Il existe donc un supplémentaire F de $\ker u$ stable par u. Soit v l'endomorphisme de F induit par u.

- D'une part, v est un isomorphisme (théorème du rang).
- D'autre part, il est nilpotent, car u l'est.

La seule possibilité est que l'espace de départ de v soit réduit à zéro, ce qui entraı̂ne que $E = \ker u + F = \ker u$, c'est-à-dire que u = 0. La réciproque est sans souci.

Remarque. Démontrer que en fait on a : F = Im u.

Exercice 21

Soient N et D dans $\mathcal{M}_n(\mathbb{C})$ avec D diagonalisable, N nilpotente non nulle et ND = DN. Montrer que D + N n'est pas diagonalisable.

On raisonne par l'absurde et on suppose que D + N est diagonalisable.

Notons g et h les endomorphismes de \mathbb{C}^n canoniquement associés à D et N. Ainsi l'endomorphisme f = g + h est diagonalisable.

Appelons $\lambda_1, \ldots, \lambda_p$ sont les valeurs propres de g (qui est diagonalisable puisque D l'est). Pour $i \in \{1, \ldots, p\}$, on note $E_i = \ker(g - \lambda_i \operatorname{Id})$.

Comme g est diagonalisable, $\mathbb{C}^n = E_1 \oplus \cdots \oplus E_p$.

Comme g et h commutent, les E_i pour $1 \leq i \leq p$) sont stables par h, et l'endomorphisme induit h_i est encore nilpotent.

De plus, pour tout $i \in \{1, ..., p\}$, le sous-espace E_i est aussi f stable et l'endomorphisme induit f_i est aussi diagonalisable.

Enfin, pour tout $i \in \{1, ..., p\}$, on a $f_i = \lambda_i \operatorname{Id}_{E_i} + h_i$ donc $h_i = f_i - \lambda_i \operatorname{Id}_{E_i}$ est diagonalisable et comme h_i est aussi nilpotent, il est nul.

Il en résulte que h = 0.

Exercice 22

Soient E un \mathbb{C} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. Pour $\lambda \in \mathbb{C}^*$, on note $\alpha_i(\lambda)$, $i \in \{1, \ldots, n\}$ les n racines n-ièmes de λ . Soient $L_i(X)$, $i \in \{1, \ldots, n\}$, les polynômes interpolateurs de Lagrange associés aux $\alpha_i(\lambda)$.

- 1. Montrer que u diagonalisable implique u^n diagonalisable. Quid de la réciproque?
- 2. Montrer que $\sum_{i=1}^{n} L_i = 1$. En déduire que $\ker(u^n \lambda \operatorname{Id}_E) = \bigoplus_{i=1}^{n} \ker(u \alpha_i(\lambda) \operatorname{Id}_E)$.
- 3. Montrer que si u est inversible, alors u^n diagonalisable implique u diagonalisable.

Pour $k \in \{1, ..., n\}$, on écrira plus simplement α_k au lieu de $\alpha_k(\lambda)$. On rappelle que :

$$L_k = c_k \prod_{j \neq k} (X - \alpha_j) \quad \text{où} \quad c_k = 1 / \prod_{j \neq k} (\alpha_k - \alpha_j).$$

Ainsi :
$$(X - \alpha_k)L_k = c_k \prod_{j=1}^n (X - \alpha_j) = c_k(X^n - \lambda).$$

1. Si u est diagonalisable, i.e. s'il existe une base \mathcal{B} de E de vecteurs propres de u, alors \mathcal{B} est une base de vecteurs propres de u^n (puisque si $u(x) = \alpha x$, alors $u^n(x) = \alpha^n x$), et donc l'endomorphisme u^n est diagonalisable.

La réciproque est fausse : un endomorphisme nilpotent u non nul n'est pas diagonalisable, alors que $u^n = 0$ l'est.

2. • Deux polynômes de degré $\leq n-1$ qui coïncident en n points sont égaux. C'est le cas des polynômes $\sum_{k=1}^{n} L_k$ et 1, qui coïncident en les n racines n-ièmes $\alpha_1, \ldots, \alpha_n$ de λ .

Autre idée : on peut aussi utiliser le fait que plus généralement, tout $P \in \mathbb{C}_{n-1}[X]$ s'écrit $P = \sum_{k=1}^{n} P(\alpha_k) L_k$.

• Les sous-espaces propres $\ker(u-\alpha_k \mathrm{Id}_E)$, où $k \in \{1,\ldots,n\}$, sont en somme directe (c'est du cours) et inclus dans $\ker(u^n-\lambda \mathrm{Id}_E)$, puisque si $u(x)=\alpha_k x$, alors $u^n(x)=\alpha_k^n x=\lambda x$.

Ainsi on a :
$$\bigoplus_{k=1}^{n} \ker(u - \alpha_k \operatorname{Id}_E) \subset \ker(u^n - \lambda \operatorname{Id}_E)$$
.

Montrons l'inclusion réciproque.

Soit $x \in \ker(u^n - \lambda \operatorname{Id}_E)$.

Puisque
$$1 = \sum_{k=1}^{n} L_k$$
, on a $\text{Id}_E = \sum_{k=1}^{n} L_k(u)$, donc : $x = \sum_{k=1}^{n} L_k(u)(x)$.

Soit $k \in \{1, ..., n\}$. Montrons que $L_k(u)(x) \in \ker(u - \alpha_k \operatorname{Id}_E)$. On a :

$$(u - \alpha_k \mathrm{Id}_E)(L_k(u)(x)) = (u - \alpha_k \mathrm{Id}_E) \circ L_k(u)(x) = P_k(u)(x)$$

9

où $P_k = (X - \alpha_k)L_k$.

Comme $P_k = c_k(X^n - \lambda)$ il vient : $P_k(u)(x) = u^n(x) - \lambda x = 0_E$.

On a donc :
$$\ker(u^n - \lambda \mathrm{Id}_E) \subset \bigoplus_{k=1}^n \ker(u - \alpha_k \mathrm{Id}_E)$$
.

3. Supposons que u inversible et que u^n est diagonalisable. Alors les valeurs propres $\lambda_1, \ldots, \lambda_r$ de u^n sont non nulles (car u^n est inversible). De plus

$$E = \bigoplus_{j=1}^{r} \ker(u^n - \lambda_j \mathrm{Id}_E).$$

Avec la question 2, on en déduit que E est une somme directe de sous-espaces propres de u: l'endomorphisme u est diagonalisable.

Exercice 23

Déterminer les $M \in \mathcal{M}_n(\mathbb{R})$ telles que $M^3 - 2M^2 + M = 0$ et tr(M) = 0.

On suppose que M est une matrice qui convient. Le polynôme $P=X^3-2X^2+X=X(X^2-2X+1)=X(X-1)^2$ est annulateur de M. Les valeurs propres possibles de M sont donc 0 et 1.

Comme M est trigonalisable sur \mathbb{C} , la condition sur la trace dit que la seule valeur propre de M est 0. Mais alors $M - I_n$ est inversible, et la condition $M(M - I_n)^2 = 0$ est équivalente à M = 0.