Feuille d'exercices n° 4. Intégration.

Exercice 1

Soit $f:[0,+\infty[\to IR, continue, telle que l'intégrale impropre \int_0^{+\infty} f(t) dt$ converge. Démontrer que :

$$\int_{x}^{2x} f(t) dt \xrightarrow[x \to +\infty]{} 0.$$

- Exercice 2
 1. La fonction $x \mapsto \frac{e^{-x}}{\sqrt{x^2 4}}$ est-elle intégrable sur $]2, +\infty[?]$
 - 2. Soit a un réel strictement positif. La fonction $x \mapsto \frac{\ln x}{\sqrt{1+x^{2a}}}$ est-elle intégrable sur $]0,+\infty[$?
 - 1. La fonction $f: x \mapsto \frac{e^{-x}}{\sqrt{x^2-4}}$ est continue sur $]2, +\infty[$.
 - On a $x^2 f(x) \underset{x \to +\infty}{\sim} x^2 \frac{e^{-x}}{x} = xe^{-x} \underset{x \to +\infty}{\longrightarrow} 0$ par croissances comparées.

Ainsi $f(x) = o(\frac{1}{x^2})$ et $t \mapsto \frac{1}{x^2}$ est intégrable en $+\infty$ donc f est intégrable en

— On a $f(x) = \frac{e^{-x}}{\sqrt{x-2}\sqrt{x+2}} \sim \frac{e^{-2}}{2\sqrt{x-2}}$. Ainsi les fonctions f est $g: x \mapsto$ $\frac{1}{\sqrt{x-2}} = \frac{1}{(x-2)^{1/2}}$ sont simultanément intégrable en 2. Mais g est intégrable en 2

Conclusion. f est intégrable sur $]2, +\infty[$.

- 2. La fonction $h: x \mapsto x \mapsto \frac{\ln x}{\sqrt{1+x^{2a}}}$ est continue sur $]0, +\infty[$.
 - Soit γ réel. On a $x^{\gamma}h(x) \underset{x \to +\infty}{\sim} \frac{\ln x}{x^{a-\gamma}}$. On a alors deux cas :
 - Si a>1, on choisit $\gamma\in]1,a[$ et alors $\dfrac{\ln x}{x^{a-\gamma}}\underset{x\to +\infty}{\longrightarrow} 0$ par croissances comparées de sorte que $h(x)=o(\frac{1}{x^{\gamma}}).$ Comme $x\mapsto \frac{1}{x^{\gamma}}$ est intégrable en $+\infty,$ il en va de même pour h
 - Si $a \le 1$ alors $xh(x) \underset{x \to +\infty}{\sim} \frac{\ln x}{x^{a-1}} \xrightarrow[x \to +\infty]{} +\infty$, par croissances comparées. Dans ce cas il existe A > 0 tel que $h(x) \ge \frac{1}{x}$ pour tout $x \ge A$. Comme $x \mapsto \frac{1}{x}$ n'est pas intégrable en $+\infty$, h non plus.
 - On a $h(x) \sim \lim_{x \to 0} \ln x$. Comme ln est intégrable en 0, h aussi.

Conclusion. h est intégrable sur $]0, +\infty[$ si et seulement si a > 1.

Exercice 3

Soit $f:[1,+\infty[\to\mathbb{R}^+$ une fonction intégrable. Démontrer que $g:t\mapsto\frac{\sqrt{f(t)}}{t}$ est intégrable sur $[1,+\infty[$.

Exercice 4

Étudier la convergence des intégrales impropres suivantes

1.
$$I = \int_{1}^{+\infty} \frac{\log x}{x^{3/2}} \, \mathrm{d}x.$$

2.
$$J = \int_0^{+\infty} \frac{\arctan x}{1 + x^2} \, dx$$
.

3.
$$I = \int_0^{+\infty} \frac{1}{(1+x^2)^2} dx$$
 et $J = \int_0^{+\infty} \frac{x^2}{(1+x^2)^2} dx$.

Exercice 5 (Intégrales de Bertrand)

Pour α et β dans IR on considère l'intégrale impropre $I_{\alpha,\beta} = \int_{2}^{+\infty} \frac{1}{t^{\alpha}(\ln t)^{\beta}} dt$.

- 1. Démontrer que si $\alpha > 1$ l'intégrale impropre $I_{\alpha,\beta}$ est convergente.
- 2. Démontrer que si $\alpha < 1$ l'intégrale impropre $I_{\alpha,\beta}$ est divergente.
- 3. On suppose ici que $\alpha = 1$. En effectuant le changement de variable $t = e^u$, étudier la convergence de l'intégrale impropre $I_{1,\beta}$.

Exercice 6 (Changement de variable)

Étudier l'existence et calculer le cas échéant les intégrales impropres suivantes.

1.
$$\int_{1}^{+\infty} \frac{\mathrm{d}x}{\mathrm{e}^{x}-1}$$
. On pourra faire un changement de variables évident...

2.
$$\int_0^{+\infty} \frac{\ln x}{1+x^2} dx$$
. On pourra faire le changement de variable $y = \frac{1}{x}$...

3.
$$\int_0^1 \frac{\ln x}{\sqrt{x}(1-x)^{3/2}} dx$$
. On pourra faire successivement les changements de variables $y = \sqrt{x}$ et $y = \cos t$.

4.
$$\int_0^{+\infty} \left(\frac{\arctan x}{x}\right)^2 dx$$
. On pourra faire le changement de variable $u = \arctan x$...

- 1. Traité.
- 2. Traité
- 3. Via le changement de variable $y=\sqrt{x}$ qui est C^1 , bijectif, croissant de]0,1[sur]0,1[, les intégrales impropres $\int_0^1 \frac{\ln x}{\sqrt{x}(1-x)^{3/2}} \,\mathrm{d}x$ et $\int_0^1 \frac{2\ln y}{(1-y^2)^{3/2}} (2\,\mathrm{d}y)$ ont même nature et même valeur si convergen

• Via le changement de variable
$$y = \cos t$$
 qui est C^1 bijectif, décroissant de $]0, \pi/2[$ sur $]0, 1[$, les intégrales impropres $\int_0^1 \frac{4 \ln y}{(1-y^2)^{3/2}} (\,\mathrm{d}y)$ et $\int_{\pi/2}^0 \frac{4 \ln \cos t}{(1-\cos^2 t)^{3/2}} (-\sin t \,\mathrm{d}t) = \int_0^{\pi/2} \frac{4 \ln \cos t}{\sin^2 t} \,\mathrm{d}t$ ont même nature et même valeur si convergence.

• Enfin une IPP formelle (valable à posteriori) donne :

$$\int_0^{\pi/2} \frac{4 \ln \cos t}{\sin^2 t} dt = -4 \cot t \ln \cos t \Big|_0^{\pi/2} - 4 \int_0^{\pi/2} \cot t \, \tan t \, dt = -2\pi.$$

2

- 4. La fonction $f: t \mapsto \left(\frac{\arctan t}{t}\right)^2$ est continue sur $]0, +\infty[$.
 - \bullet En 0, $f(t) \underset{t \to 0}{\sim} 1$ donc cette intégrale est faussement impropre en 0.
 - En $+\infty$, on a $0 \le \left(\frac{\arctan t}{t}\right)^2 \le \frac{\pi}{4x^2}$. Comme $x \mapsto \frac{\pi}{4x^2}$ est intégrable en $+\infty$, il en va de même de f, par domination.
 - Le changement de variable $u = \arctan x$ qui est C^1 bijectif croissant de $]0, +\infty[$ sur $]0, \pi/2[$ donne :

$$\int_0^{+\infty} \left(\frac{\arctan x}{x} \right)^2 dx = \int_0^{\pi/2} \left(\frac{u}{\sin u} \right)^2 du.$$

Deux IPP formelles (justifiées à posteriori) donnent :

$$\int_0^{\pi/2} \left(\frac{u}{\sin u}\right)^2 du = \underbrace{-u^2 \cot u}_{=0}^{\pi/2} + 2 \int_0^{\pi/2} u \cot u du$$
$$= \underbrace{-2u \ln(\sin u)}_{=0}^{pi/2} - \int_0^{\pi/2} \ln(\sin u) du$$

Il reste à calculer $I=\int_0^{\pi/2}\ln(\sin u)\,\mathrm{d}u$ (qui est bien convergente). Le changement de variable $u=\frac{\pi}{2}-t$ donne I=J où $J=\int_0^{\pi/2}\ln(\cos t)\,\mathrm{d}t$. Il vient alors :

$$2I = I + J = \int_0^{\pi/2} \ln(\cos u \sin u) \, du = \int_0^{\pi/2} (\ln \sin 2u - \ln 2) \, du$$

$$= -\frac{\pi}{2} \ln 2 + \int_0^{\pi/2} \ln \sin 2u \, du = -\frac{\pi}{2} \ln 2 + \frac{1}{2} \int_0^{\pi} \ln \sin u \, du$$

$$= -\frac{\pi}{2} \ln 2 + \frac{1}{2} \left(\underbrace{\int_0^{\pi/2} \ln \sin u \, du}_{=I} + \underbrace{\int_{\pi/2}^{\pi} \ln \sin u \, du}_{=I} \right)$$

donc
$$I = -\frac{\pi}{2} \ln 2$$
.

Exercice 7

- 1. Démontrer que pour tout $n \ge 1$ entier l'intégrale impropre $\int_0^1 \frac{x^n \ln x}{1-x} dx$ converge.
- 2. a) Pour $n \in \mathbb{N}^*$ et $t \in [0,1[$, démontrer que :

$$\sum_{k=1}^{n} \int_{0}^{1} t^{k} \ln t \, dt = \int_{0}^{1} \frac{t \ln t}{1 - t} \, dt + I_{n},$$

où I_n est une intégrale que l'on précisera.

b) En déduire la valeur de $I = \int_0^1 \frac{x \ln x}{1 - x} dx$.

Exercice 8 Existence et calcul de $I = \int_0^1 \frac{x-1}{\ln x} dx$.

- \bullet L'intégrale impropre I converge car faussement impropre en 0 et 1.
- Soit $x \in]0,1[$. On pose $I(x)=\int_0^x \frac{t-1}{\ln t} dt.$ On a correctement (les deux intégrales impropres du membre de droite sont convergentes...):

$$I(x) = \int_0^x \frac{t}{\ln t} dt - \int_0^x \frac{1}{\ln t} dt.$$

Mais le changement de variables $s = t^2$, bijectif C^1 et croissant de]0,x[sur $]0,x^2[$ assure que:

$$\int_0^x \frac{t}{\ln t} \, dt = \int_0^{x^2} \frac{2\sqrt{s}}{\ln s} \, \frac{ds}{2\sqrt{s}} = \int_0^{x^2} \frac{1}{\ln s} \, ds.$$

Ainsi, en rédigeant rapidement :

$$I(x) = \int_{x}^{x^{2}} \frac{1}{\ln t} dt \underbrace{=}_{t=e^{u}} \int_{\ln x}^{2\ln x} \frac{e^{u}}{u} du = \underbrace{\int_{\ln x}^{2\ln x} \frac{e^{u} - 1}{u} du}_{\text{rad}} + \underbrace{\int_{\ln x}^{2\ln x} \frac{1}{u} du}_{\text{rad} \ln 2} \xrightarrow{\text{rad} \ln 2}$$

Ainsi $I = \ln 2$.

Exercice 9

Soient T>0 et $f:\mathbb{R}\to\mathbb{R}$ une fonction continue et T-périodique. On note

$$I = \frac{1}{T} \int_0^T f(t) dt \ \text{ et on considère } g: \mathbb{R} \to \mathbb{R} \text{ définie par } : g(x) = \int_0^x f(t) dt - xI.$$

- a) Montrer que g est de classe C^1 et T-périodique.
- b) Pour a > 0 que dire de $\int_{a}^{+\infty} \frac{f(t) I}{t} dt$?
- c) Montrer que $h(x) = \int_{0}^{+\infty} \frac{f(t) I}{t} dt =_{+\infty} O\left(\frac{1}{x}\right)$.
 - 1. La fonction $F: x \mapsto \int_0^x f(t) dt$ est de classe C^1 sur \mathbb{R} (puisque f est continue) avec F'=f. Il en résulte que g est de classe C^1 sur \mathbb{R} , avec g'(x)=f(x)-I pour tout x
 - Pour tout $x \in \mathbb{R}$ on a :

$$g(x+T) = F(x+T) - (x+T)I == F(x) + \underbrace{\int_{x}^{x+T} f(t) dt}_{=F(T)} - xI - F(T) = 0.$$

4

Ainsi g est T-périodique.

2. Comme g est C^1 , on peut faire une intégration par parties. Pour $0 < a \leqslant x$ réels, on a :

$$\int_{a}^{x} \underbrace{\frac{f(t) - I}{t}}_{=\frac{g'(t)}{t}} dt = \left\{ \frac{g(t)}{t} \right\}_{a}^{x} + \int_{a}^{x} \frac{g(t)}{t^{2}} dt.$$

Mais g est continue et périodique : elle est bornée par un réel positif M sur \mathbb{R} . Comme $t\mapsto \frac{1}{t^2}$ est intégrable sur $[a,+\infty[$, on peut dire que $\int_a^{+\infty} \frac{f(t)-I}{t}\,\mathrm{d}t$ converge de valeur $-\frac{g(a)}{a} + \int_a^{+\infty} \frac{g(t)}{t^2} dt.$

3. Pour x > 0, on a

$$|h(x)| \leqslant \frac{M}{x} + \int_{x}^{+\infty} \frac{M}{t^2} dt = \frac{2}{M}t.$$

Ainsi $h(x) =_{+\infty} O\left(\frac{1}{x}\right)$.

Exercice 10

Pour $n \in \mathbb{N}$ et $s \in \mathbb{R}$ on note : $I_n = \int_0^{+\infty} \frac{1 - \cos^n t}{t^2} dt$ et $I(s) = \int_0^{+\infty} \frac{1 - \cos(st)}{t^2} dt$.

- 1. Justifier que l'intégrale impropre I_n converge pour tout $n \in N$ et qu'elle est strictement positive.
- 2. Pour tout $s \in \mathbb{R}$, justifier de la convergence de l'intégrale impropre I(s) et exprimer sa valeur en fonction de |s| et I_1 .
- 3. a) Pour tout $n \in \mathbb{N}^*$, étudier, à l'aide du changement de variables $t = \sqrt{\frac{2u}{n}}$, la convergence de l'intégrale impropre

$$J_n = \int_0^{+\infty} \frac{1 - \left(\cos\sqrt{\frac{2u}{n}}\right)^n}{u\sqrt{u}} du,$$

et déterminer une relation entre I_n et J_n .

- b) Établir, pour tout $(n, u) \in \mathbb{N}^* \times]0, 1]$, l'inégalité : $\left|1 \left(\cos\sqrt{\frac{2u}{n}}\right)^n\right| \leqslant u$.
- c) Démontrer que la suite $(J_n)_{n\in\mathbb{N}^*}$ est bornée.
 - 1. Soit $n \in \mathbb{N}^*$.
 - L'application $f_n: t \mapsto \frac{1 (\cos t)^n}{t^2}$ est continue sur $]0, +\infty[$.
 - Pour tout $t \in]0, +\infty[$ on a : $|f_n(t)| \leq \frac{2}{t^2}$. Comme $t \mapsto \frac{1}{t^2}$ est intégrable en $+\infty$, par domination f_n est intégrable en $+\infty$.
 - On va utiliser les développements limités suivants :

$$\begin{cases}
\cos u &= 1 - \frac{u^2}{2} + o(u^3) \\
(1+u)^n &= 1 + nu + o(u)
\end{cases}$$

On a $(\cos t)^n = \left(1 - \frac{1}{t^2} + o(t^2)\right)^n = 1 - n\frac{t^2}{2} + o(t^2)$, donc:

$$f_n(t) \underset{t\to 0}{=} \frac{n}{2} + o(1) \xrightarrow[t\to 0]{} \frac{n}{2}.$$

Ainsi f_n est prolongeable par continuité en 0 : elle est intégrable en 0.

• Enfin, $f_n \ge 0$, est continue et n'est pas identiquement nulle : $I_n = \int_{1}^{+\infty} f_n > 0$.

5

- 2. Soit $s \in \mathbb{R}$.
 - La fonction $t \mapsto \frac{1 \cos st}{t^2}$ est continue sur $]0, +\infty[$.
 - Si s=0 la fonction précédente est nulle sur $]0,+\infty[$ donc l'intégrale impropre I(0) est convergente.

Si maintenant s>0, le changement de variable v=su (valable car $u\mapsto su$ est une fonction C^1 strictement croissante et bijective de $]0,+\infty[$ sur lui même) permet de dire que les intégrales impropres I(s) et $\int_0^{+\infty} \frac{1-\cos v}{(v/s)^2} \frac{\mathrm{d}v}{s}$ ont même nature, et même valeur si convergence.

Or $\int_0^{+\infty} \frac{1-\cos v}{(v/s)^2} \frac{\mathrm{d}v}{s} = sI_1$, donc l'intégrale impropre I(s) converge de valeur $I(s) = sI_1$.

Si maintenant s<0, le changement de variable v=su (valable car $u\mapsto su$ est une fonction C^1 strictement décroissante et bijective de $]0,+\infty[$ sur lui même) permet de dire que les intégrales impropres I(s) et $\int_{+\infty}^0 \frac{1-\cos v}{(v/s)^2} \frac{\mathrm{d}v}{s}$ ont même nature, et même valeur si convergence.

Or $-\int_0^{+\infty} \frac{1-\cos v}{(v/s)^2} \frac{\mathrm{d}v}{s} = -sI_1$, donc l'intégrale impropre I(s) converge de valeur $I(s) = -sI_1$.

Conclusion. L'intégrale impropre I(s) est convergente et $I(s) = |s| I_1$.

3. a) Soit $n \in \mathbb{N}^*$. L'application $u \mapsto \sqrt{\frac{2u}{n}}$ de $]0, +\infty[$ dans luis même est C^1 (achtung : ne pas prendre 0!), strictement croissante et bijective.

Ainsi par le changement de variable $t = \sqrt{\frac{2u}{n}}$, les intégrale impropres I_n et

$$\int_0^{+\infty} \frac{1 - \left(\cos\sqrt{\frac{2u}{n}}\right)^n}{(2u/n)} \frac{\frac{2}{n} du}{2\sqrt{\frac{2u}{n}}}$$

ont même nature et même valeur si convergence.

Mais on a : $\int_0^{+\infty} \frac{1 - \left(\cos\sqrt{\frac{2u}{n}}\right)^n}{(2u/n)} \frac{\frac{2}{n} du}{2\sqrt{\frac{2u}{n}}} = \frac{\sqrt{n}}{2\sqrt{2}} J_n, \text{ donc l'intégrale impropre } J_n$

(puisque l'intégrale impropre I_n l'est) est convergente et :

$$I_n = \frac{\sqrt{n}}{2\sqrt{2}}J_n.$$

b) Soit $n \in \mathbb{N}^*$. Soit $ng = \begin{pmatrix} [0,1] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \left(\cos\sqrt{\frac{2u}{n}}\right)^n \end{pmatrix}$. Cette fonction est continue sur [0,1] et dérivable sur]0,1] et si $x \in]0,1]$ on a :

$$g'_n(x) = n\sqrt{\frac{2}{n}} \frac{1}{2\sqrt{u}} \left(-\sin\sqrt{\frac{2u}{n}}\right) \left(\cos\sqrt{\frac{2u}{n}}\right)^{n-1}.$$

Mais les accroissements finis permettent de dire que pour tout t réel $|\sin t| \leq |t|$ donc, pour tout $x \in]0,1]$ il vient :

$$\left|g_n'(x)\right| \leqslant 1$$

Les accroissements finis appliqués à g_n cette fois permettent d'écrire que pour tout x dans [0,1], on a :

$$|g_n(0) - |g_n(x)|| \leqslant |x|.$$

Conclusion. Pour tout $n \in \mathbb{N}^*$ et tout $x \in]0,1]$ on a : $\left|1 - \left(\cos\sqrt{\frac{2x}{n}}\right)^n\right| \leqslant x$.

c) Pour tout $n \in \mathbb{N}^*$ on a, en utilisant deux fois l'inégalité triangulaire : :

$$|J_n| \leqslant \int_0^1 \frac{\left|1 - \left(\cos\sqrt{\frac{2u}{n}}\right)^n\right|}{u\sqrt{u}} du + \int_1^{+\infty} \frac{\left|1 - \left(\cos\sqrt{\frac{2u}{n}}\right)^n\right|}{u\sqrt{u}} du$$
$$\leqslant \int_0^1 \frac{du}{\sqrt{u}} + \int_1^{+\infty} \frac{2 du}{2\sqrt{u}} = 5$$

Exercice 11

Soit $f: \mathbb{R}^+ \to \mathbb{R}^+$, continue, intégrable sur \mathbb{R}^+ . On suppose qu'il existe $g: \mathbb{R}^+ \to \mathbb{R}^+$ continue et une constante $A \geqslant 0$ telles que pour tout $x \geqslant 0: g(x) \leqslant A + \int_0^x f(t)g(t) \, \mathrm{d}t$.

En considérant $h: x \mapsto \exp\left(-\int_0^x f(t) dt\right) \left(A + \int_0^x f(t)g(t) dt\right) de \mathbb{R}^+$ dans \mathbb{R} , démontrer que g est bornée.

On considère la fonction auxiliaire $\varphi : \mathbb{R}^+ \to \mathbb{R}$ définie par :

$$\varphi(x) = \exp\left(-\int_0^x f(t) dt\right) \left(A + \int_0^x f(t)g(t) dt\right).$$

Comme f et g sont continue, cette fonction est de classe C^1 .pour $x \ge 0$ réel, on a :

$$\varphi'(x) = \underbrace{f(x) \exp\left(-\int_0^x f(t) dt\right)}_{>0} \left(g(x) - A - \int_0^x f(t)g(t)\right) \leqslant 0.$$

Il en résulte que φ est décroissante sur \mathbb{R}^+ . Pour tout $x \geqslant 0$ on a donc :

$$A = \varphi(0) \geqslant \varphi(x).$$

Il vient ainsi, pour tout $x \ge 0$:

$$\underbrace{\left(A + \int_0^x f(t)g(t) \, \mathrm{d}t\right)}_{\geqslant g(x)} \leqslant A \exp\left(\int_0^x f(t) \, \mathrm{d}t\right).$$

Mais f est intégrable sur \mathbb{R}^+ et est positive : pour tout x réel, on a $0 \leqslant \int_0^x f(t) dt \leqslant \int_0^{+\infty} f(t) dt$.

Enfin, pour tout
$$x \ge 0$$
, on a donc : $0 \le g(x) \le A \exp\left(\int_0^{+\infty} f(t) dt\right)$.

Le fonction g est donc bornée sur \mathbb{R}^+ .

Commentaires

- 1. Essayer de comprendre d'où vient cette fonction auxiliaire. Comparer notamment avec d'autres exercices (dont un dans cette feuille) présentant des situations similaires.
- 2. Autre Méthode. On peut supposer A > 0. Pour tout $x \ge 0$ on a alors :

$$\frac{f(x)g(x)}{A + \int_0^x f(t)g(t) dt} \leqslant f(x).$$

Le premier membre est une dérivée logarithmique. On intègre alors cette inégalité entre 0 et $X\geqslant 0...$

Exercice 12

- 1. Soit $\varphi: \mathbb{R}^+ \to \mathbb{R}$ de classe C^1 . On suppose que $\lim_{x \to +\infty} \varphi'(x) = +\infty$. Démontrer que $\exists \lim_{x \to +\infty} \varphi(x) = +\infty$
- 2. Soit $f: \mathbb{R}^+ \to \mathbb{R}$ de classe C^2 telle les fonctions f^2 et $(f'')^2$ soient intégrables sur \mathbb{R}^+ .
 - a) Démontrer que ff'' est intégrable sur \mathbb{R}^+ .
 - b) Démontrer que si $(f')^2$ n'est pas intégrable sur \mathbb{R}^+ alors $\exists \lim_{x \to +\infty} f(x) f'(x) = +\infty$.
 - c) Qu'en conclure?
 - 1. Comme $\lim_{x \to +\infty} \varphi'(x) = +\infty$, il existe $A \geqslant 0$ réel tel que $f' \geqslant 0$ sur $[A, +\infty[$. Sur cet intervalle φ est donc croissante : $\lim_{x \to +\infty} \varphi(x) \in \mathbb{R} \cup \{+\infty\}$.

Supposons que cette limite soit un réel ℓ . Pour $x \in \mathbb{R}^+$, on écrit les accroissements finis ponctués entre x et x+1 pour la fonction φ . Il existe c_x entre x et x+1 tel que :

$$\varphi(x+1) - \varphi(x) = \varphi'(c_x)$$
 (\spadesuit)

Comme $c_x \ge x$, on a $\lim_{x \to +\infty} c_x = +\infty$, et, par composition des limites $\lim_{x \to +\infty} \varphi'(c_x) = +\infty$. Comme $\varphi(x+1) - \varphi(x) \xrightarrow[x \to +\infty]{} \ell + \ell = 0$, on obtient une contradiction avec (\spadesuit) .

- 2. a. Sur \mathbb{R}^+ , on a : $|ff''| \leq \frac{1}{2}(f^2 + (f'')^2)$. par domination, comme f^2 et $(f'')^2$ sont intégrables sur \mathbb{R}^+ , |ff''| est intégrable sur \mathbb{R}^+ .
 - b. Soit x > 0. On fait une intégration par parties.

$$\int_0^x ff'' = [ff']_0^x - \int_0^x (f')^2 = f(x)f'(x) - f(0)f'(0) - \int_0^x (f')^2$$

Or $\exists \lim_{x \to +\infty} \int_0^x f f'' \in \mathbb{R}$ selon la question précédente.

Supposons que $(f')^2$ n'est pas intégrable sur \mathbb{R}^+ . Alors $\int_0^x (f')^2 \xrightarrow[x \to +\infty]{} +\infty$, donc $f(x)f'(x) \xrightarrow[x \to +\infty]{} +\infty$;

c. Si $(f')^2$ n'est pas intégrable sur \mathbbm{R}^+ alors $f(x)f'(x) \underset{x \to +\infty}{\longrightarrow} +\infty$; selon la première question, $f^2(x) \underset{x \to +\infty}{\longrightarrow} +\infty$, ce qui contredit le fait que f^2 est intégrable sur \mathbbm{R}^+ .

Ainsi
$$(f')^2$$
 est intégrable sur \mathbb{R}^+ .

Exercice 13 Soit $f:]0,1] \to \mathbb{R}$ continue, décroissante, telle que l'intégrale impropre $\int_0^1 f(t) \, \mathrm{d}t$ converge. Démontrer que $\lim_{x\to 0} xf(x) = 0$.

Comme f est décroissante, $\exists \lim_{x\to 0} f(x) \in \mathbb{R} \cup \{+\infty\}.$

Si cette limite est un réel ℓ , on a : $\exists \lim_{x\to 0} x f(x) = 0$.

Sinon $\lim_{x\to 0} f(x) = +\infty$. Il existe alors $x_0 \in]0,1]$ tel que pour tout $x \in]0,x_0]$ on ait : $f(x) \ge 0$. Soit $x \in]0,x_0]$. Pour tout $t \in]0,x]$ (puisque f est décroissante), on a :

$$0 \leqslant f(x) \leqslant f(t)$$

On intègre entre 0 et x pour obtenir :

$$0 \leqslant x f(x) \leqslant \int_0^x f(t) \, \mathrm{d}t$$
 (4)

Cette dernière inégalité est valable pour tout $x \in]0, x_0]$. Or f est intégrable sur]0, 1] donc $\exists \lim_{x \to 0} \int_0^x f(t) dt = 0$. Par sandwich, avec (\clubsuit), on obtient donc : $\exists \lim_{x \to 0} x f(x) = 0$.

Exercice 14 (Transformée de Hardy) Soit $f: \mathbb{R}^+ \to \mathbb{R}^+$, continue telle que $I = \int_0^{+\infty} f^2(t) dt$ converge. On note $F: x \mapsto \int_0^x f(t) dt$ de \mathbb{R}^+ dans \mathbb{R} et on considère :

$$H_f: x \mapsto \frac{1}{x} \int_0^x f(t) dt.$$

- 1. Démontrer que H_f est prolongeable par continuité en 0 en une fonction encore notée H_f .
- 2. Démontrer que pour tout x > 0 on a :

$$\int_0^x H_f(t)^2 dt = -F(x)H_f(x) + 2\int_0^x f(t)H_f(t) dt$$

- 3. En déduire que pour tout x > 0 on a : $\int_0^x H_f(t)^2 dt \le 2\sqrt{I} \sqrt{\int_0^x H_f(t)^2 dt}$.
- 4. Démontrer que $\int_0^{+\infty} H_f(t)^2 dt$ converge avec $\int_0^{+\infty} H_f(t)^2 dt \leqslant 4I$.
 - 1. Soit $F: \mathbb{R}^+ \to \mathbb{R}$ définie par $F(x) = \int_0^x f(t) dt$. Par continuité de f, F est de classe C^1 avec F' = f. Puis, si x > 0, on a :

$$H_f(x) = \frac{F(x)}{x} = \frac{F(x) - F(0)}{x} \xrightarrow[x \to 0^+]{} F'(0) = f(0).$$

On peut donc prolonger H_f par continuité en 0 en posant $H_f(0) = f(0)$.

2. Soit x > 0. On a:

$$\int_0^x H_f(t)^2 dt = \int_0^x \frac{F(t)^2}{t^2} dt = \int_{IPP} \int_{formelle} \left\{ -\frac{1}{t} F(t)^2 \right]_0^x + 23 \int_0^x \frac{1}{t} f(t) F(t) dt$$

Notons que cette intégration par parties est correcte puisque pour tout t > 0 on a $-\frac{1}{t}F(t)^2 = -F(t)H_f(t) \xrightarrow[t \to 0^+]{} 0$. Il vient ainsi :

$$\int_0^x H_f(t)^2 dt = -\underbrace{\frac{F(x)^2}{x}}_{\geqslant 0} + 2 \int_0^x f(t) H_f(t) dt$$

$$\leqslant 2 \int_0^x f(t) H_f(t) dt \underbrace{\leqslant}_{Cauchy-Schwarz} 2 \sqrt{\int_0^x f(t)^2 dt} \sqrt{\int_0^x H_f(t)^2 dt}.$$

Ainsi :
$$\int_0^x H_f(t)^2 dt \leqslant 2\sqrt{I} \sqrt{\int_0^x H_f(t)^2 dt}.$$

3. Si
$$\int_0^x H_f(t)^2 dt$$
 soit nulle pour tout $x > 0$ alors H_f^2 est intégrable sur \mathbb{R}^+ .

Sinon il existe $x_0 > 0$ tel que $\int_0^{x_0} H_f(t)^2 dt > 0$ et par positivité de H_f^2 , $\int_0^x H_f(t)^2 dt > 0$ pour tout $x \ge x_0$. Ainsi, pour tout $x \ge x_0$, d'après la question précédente, on obtient $\sqrt{\int_0^x H_f(t)^2 dt} \le 2\sqrt{I}$ donc :

$$\int_0^x H_f(t)^2 \, \mathrm{d}t \leqslant 4I.$$

Les intégrales partielles de H_f^2 sont majorées : H_f^2 est intégrable sur \mathbb{R}^+ .

Exercice 15

Soient a et b réels, $f: \mathbb{R} \to \mathbb{R}$ une fonction continue telle que $\exists \lim_{x \to -\infty} f = \ell \in \mathbb{R}$ et telle que l'intégrale impropre $\int_0^{+\infty} f(t) \, \mathrm{d}t$ converge. Pour u v dans \mathbb{R} on pose : $J(u,v) = \int_u^v f(a+x) - f(b+x) \, \mathrm{d}x$

- 1. Démontrer que pour tout u et v réels on a : $J(u,v) = \int_{u+a}^{u+b} f(t) dt \int_{v+a}^{v+b} f(t) dt$.
- 2. En déduire que $I(a,b) = \int_{-\infty}^{+\infty} f(a+x) f(b+x) dx$ converge ainsi que la valeur de cette intégrale.
 - 1. Soient u et v des réels. On a :

$$J(u,v) = \int_{u}^{v} f(a+x) - f(b+x) \, \mathrm{d}x = \int_{u}^{v} f(a+x) \, \mathrm{d}x - \int_{u}^{v} f(b+x) \, \mathrm{d}x$$

$$= \int_{u+a}^{v+a} f(t) \, \mathrm{d}t - \int_{u+b}^{v+b} f(t) \, \mathrm{d}t \quad \text{(changements de variables \'evidents)}$$

$$= \int_{u+a}^{u+b} f(t) \, \mathrm{d}t + \int_{u+b}^{v+a} f(t) \, \mathrm{d}t - \left(\int_{u+b}^{v+a} f(t) \, \mathrm{d}t + \int_{v+a}^{v+b} f(t) \, \mathrm{d}t \right)$$

$$= \int_{u+a}^{u+b} f(t) \, \mathrm{d}t - \int_{v+a}^{v+b} f(t) \, \mathrm{d}t$$

• Soit $v \in \mathbb{R}$. On a :

$$\int_{v+a}^{v+b} f(t) dt = \int_{v+a}^{0} f(t) dt + \int_{0}^{v+b} f(t) dt = \int_{0}^{v+b} f(t) dt - \int_{0}^{v+a} f(t) dt.$$

Comme l'intégrale impropre $\int_0^{+\infty} f(t) dt$ converge, il vient

$$\int_{v+a}^{v+b} f(t) dt \underset{v \to +\infty}{\longrightarrow} \int_{0}^{+\infty} f(t) dt - \int_{0}^{+\infty} f(t) dt = 0.$$

• Notons F la fonction définie pour x réel par $F(x) = \int_0^x f(t) dt$. Comme f est continue, F est de classe C^1 avec F' = f.

Soit $u \in \mathbb{R}$. On a : $\int_{u+a}^{u+b} f(t) dt = F(u+b) - F(u+a)$. D'après l'inégalité des accroissements finies appliquée F, il existe c_u entre a+u et b+u tel que :

$$F(u+b) - F(u+a) = f(c_u)(b-a).$$

Si maintenant $u \xrightarrow[+\infty]{} -\infty$, par sandwich $c_u \xrightarrow[u\to+\infty]{} -\infty$ et par composition des limites, $f(c_u) \xrightarrow[u\to+\infty]{} \ell$. Ainsi :

$$\int_{u+a}^{u+b} f(t) dt \xrightarrow[u \to -\infty]{} \ell(b-a).$$

Conclusion. Avec les deux points précédents, dans l'expression de J(u, v) obtenue à la question précédente, en faisant tendre u vers $-\infty$ et v vers $+\infty$, on est assuré que l'intégrale impropre $I(a,b) = \int_{-a}^{+\infty} f(a+x) - f(b+x) dx$ converge de valeur $I(a,b) = \ell(b-a)$.

Exercice 16

Soit $f:[0,+\infty[\to \mathbb{R}, \text{ positive, lipschitzienne de rapport } k$ telle que l'intégrale impropre $\int_0^{+\infty} f(t) dt$ converge.

- 1. Démontrer que f admet une limite nulle en 0.
- 2. Démontrer que f^2 est intégrable sur $[0, +\infty[$.
 - 1. Dire que f admet une limite nulle en $+\infty$ signifie que :

$$(\forall \varepsilon > 0)(\exists A \geqslant 0)(\forall x \geqslant A)(|f(x)| \leqslant \varepsilon).$$

On raisonne par l'absurde et on suppose donc

$$(\exists \varepsilon > 0)(\forall A \ge 0)(\exists x \ge A)(f(x) > \varepsilon).$$

2. Comme f est de limite nulle en $+\infty$, il existe $A \in \mathbb{R}^+$ tel que pour tout $x \ge A$ on ait

$$0 \leqslant f(x) \leqslant 1$$
.

Pour tout $x \ge A$ il vient alors $0 \le f(x)^2 \le f(x)$: ainsi, par domination, f^2 est intégrable sur $[0, +\infty[$.

Exercice 20 Soit, pour
$$n \ge 1$$
: $I_n = \int_0^{+\infty} \frac{\mathrm{d}x}{(1+x^4)^n}$.

- 1. Démontrer l'existence de I_n et trouver sa limite quand $n \to \infty$. 2. En posant $u = \frac{1}{x}$, montrer que $I_1 = \frac{1}{2} \int_0^{+\infty} \frac{1+u^2}{1+u^4} du$. Puis, en posant $v = u \frac{1}{u}$, calculer I_1 .
- 3. Calculer I_n .
 - 1. Comme $f_n(x) \sim_{+\infty} \frac{1}{x^{4n}}$ et que $4n \geqslant 4$ pour tout $n \geqslant 1$, la fonction f_n est intégrable sur $[1, +\infty[$, donc I_n existe. Par ailleurs, la suite numérique de terme général $f_n(x) = \frac{1}{(1+x^4)^n}$ est une suite géométrique de raison $\frac{1}{1+x^4} \in [0, 1[$ pour tout x > 0; elle converge donc vers zéro. On en déduit que la suite (f_n) converge vers la fonction indicatrice du singleton $\{0\}$, notée f, continue par morceaux sur $[0, +\infty[$. On dispose aussi de l'hypothèse de domination :

$$\forall n \geqslant 1, \quad \forall x \in [0, +\infty[, |f_n(x)| \leqslant f_1(x),$$

où f_1 est continue et intégrable sur $[0, +\infty[$. Le théorème de convergence dominée affirme alors que

$$\lim_{+\infty} I_n = \int_0^{+\infty} f(x) \, \mathrm{d}x = 0.$$

2. La fonction $\psi \colon u \in]0, +\infty[\mapsto \frac{1}{u} \in]0, +\infty[$ est une bijection de classe \mathcal{C}^1 . Le théorème de changement de variable dans les intégrales impropres affirme alors que les deux intégrales $\int_0^{+\infty} f_1 \cdot \psi \times \psi'$ sont de même nature et, dans le cas de convergence, l'elles sont égales. Ici, on obtient

$$I_1 = \int_0^{+\infty} \frac{1/u^2}{1 + (1/u^4)} du = \int_0^{+\infty} \frac{u^2}{u^4 + 1} du.$$

Ce n'est pas le résultat attendu, mais on dispose maintenant de deux expressions de I_1 : celle qu'on vient d'obtenir ci-dessus, ainsi que la définition d'origine. En remarquant que $I_1 = \frac{1}{2}(I_1 + I_1)$, et en utilisant ces deux expressions, on obtient

$$I_1 = \frac{1}{2} \int_0^{+\infty} \frac{u^2 + 1}{u^4 + 1} \, \mathrm{d}u.$$

La fonction $\theta: u \in]0, +\infty[\mapsto u - \frac{1}{u} \in \mathbb{R}$ est un difféomorphisme de classe \mathcal{C}^1 , car $\theta'(u) = 1 + \frac{1}{u^2} > 0$, $\lim_{\theta \to 0} \theta(u) = -\infty$ et $\lim_{t \to 0} \theta(u) = +\infty$. On peut donc effectuer la changement de variable $u = \theta^{-1}(v)$ dans l'intégrale I_1 . Voici quelques calculs préliminaires, où l'on a posé $v = \theta(u) = u - \frac{1}{u}$:

— On a $v^2 = u^2 - 2 + \frac{1}{u^2}$ donc $u^2v^2 = u^4 + 1 - 2u^2$, donc $u^4 + 1 = u^2(2 + v^2)$.

— Comme $dv = (1 + \frac{1}{u^2}) du$, on a $(u^2 + 1) du = u^2 dv$.

Le théorème de changement de variable mène à

$$I_1 = \frac{1}{2} \int_{-\infty}^{+\infty} \frac{u^2 \, \mathrm{d}v}{u^2 (2 + v^2)} = \frac{1}{2} \int_{-\infty}^{+\infty} \frac{\mathrm{d}v}{2 + v^2} = \frac{1}{2} \left[\frac{1}{\sqrt{2}} \arctan\left(\frac{v}{\sqrt{2}}\right) \right]_{-\infty}^{+\infty} = \frac{\pi}{2\sqrt{2}}$$

3. On va établir une relation de récurrence portant sur les intégrales I_n , en écrivant que $1 = 1 + x^4 - x^4$, puis en effectuant une intégration par parties, en dérivant x et en intégrant $\frac{x^3}{(1+x^4)^n}$. On effectue le calcul sur [0,a], puis on fait tendre a vers $+\infty$. Pour

$$\begin{split} \int_0^a \frac{\mathrm{d}x}{(1+x^4)^n} &= \int_0^a \frac{1+x^4-x^4}{(1+x^4)^n} \, \mathrm{d}x \\ &= \int_0^a \frac{\mathrm{d}x}{(1+x^4)^{n-1}} - \int_0^a x \times \frac{x^3}{(1+x^4)^n} \, \mathrm{d}x \\ &= \int_0^a \frac{\mathrm{d}x}{(1+x^4)^{n-1}} - \left[\frac{x}{4(-n+1)(1+x^4)^{n-1}} \right]_0^a + \int_0^a \frac{1}{4(-n+1)(1+x^4)^{n-1}} \, \mathrm{d}x \\ &= \int_0^a \frac{\mathrm{d}x}{(1+x^4)^{n-1}} + \frac{a}{4(n-1)(1+a^4)^{n-1}} - \frac{1}{4(n-1)} \int_0^a \frac{\mathrm{d}x}{(1+x^4)^{n-1}} \cdot \end{split}$$

Comme $n \ge 2$, le terme central tend vers zéro quand n tend vers $+\infty$, et on obtient

$$I_n = \left[1 - \frac{1}{4(n-1)}\right]I_{n-1} = \frac{4n-5}{4(n-1)}I_{n-1}.$$

On en déduit que

$$I_n = \frac{(4n-5) \times (4n-9) \times \dots \times 7 \times 3}{4(n-1) \times 4(n-2) \times \dots \times 8 \times 4} I_1 = \frac{(4n-5) \times (4n-9) \times \dots \times 7 \times 3}{4^{n-1}(n-1)!} \frac{\pi}{2\sqrt{2}}$$

Exercice 21

Soit (f_n) une suite de fonctions continues de [0,1] dans \mathbb{R} . On suppose que (f_n) converge simplement vers 0 et que la suite $\left(\int_0^1 f_n(t) dt\right)$ est bornée. Est-il vrai que $\lim_{n \to +\infty} \int_0^1 f_n(t) dt = 0$?

Non, et voici un contre-exemple : pour $n \ge 2$, on considère la fonction f_n affine par morceaux définie par $f(0) = f(\frac{1}{n}) = f(1) = 0$ et $f(\frac{1}{2n}) = 2n$. Le graphe de f_n présente, au voisinage de zéro, un pic triangulaire de base horizontale $\frac{1}{n}$ et de hauteur 2n.

La suite (f_n) converge simplement vers la fonction nulle, on a $\int_0^1 f_n(t) dt = 1$ (aire d'un triangle) pour tout n, donc la suite étudiée est bornée, mais elle ne converge pas vers zéro. En modifiant la hauteur du pic, par exemple en prenant $f(\frac{1}{2n}) = 2n$ si n est pair et $f(\frac{1}{2n}) = n$ si n est impair, on obtient même un cas où la suite de terme général $\int_0^1 f_n(t) dt$ est bornée et n'a pas de limite, puisque ce terme général vaut alternativement 1 et $\frac{1}{2}$ en fonction de la parité de n.