Feuille d'exercices n° 2. Algèbre linéaire II. Quelques corrections

Avertissement. Dans toute cette feuille d'exercice, lk désigne IR ou C.

Exercice 3

On note $E = \mathcal{C}([0,1],\mathbb{R})$. Pour $f \in E$ on considère l'application $T(f):[0,1] \to \mathbb{R}$ définie par :

$$T(f)(x) = \int_0^x f(4(t-t^2))dt.$$

- a. Montrer que $T: f \mapsto T(f)$ est un endomorphisme de E.
- b. T est-il surjectif? injectif?
 - a) On note $h:[0,1] \to \mathbb{R}$ définie par $h(t)=4(t-t^2)$. Une étude de fonction montre que h([0,1])=[0,1]. de sorte que pour f dans E, la composée $f\circ h$ est correctement définie. Ainsi, comme pour tout f dans E, $f\circ h$ est continue sur [0,1], T(f) est correctement définie et de classe C^1 (théorème fondamental), et vérifie $[T(f)]'=f\circ h$. En, particulier pour tout $f\in E$, on a $T(f)\in E$.
 - La linéarité est pour le lecteur.
 - b) Pour tout f dans E, T(f) est de classe C^1 mais il existe dans E des fonctions qui ne sont pas dérivables (en donner un exemple!), donc qui ne peuvent être des images : T(f) n'est pas surjectif.
 - Si $fn \ker T$ alors T(f) = 0 donc, en dérivant, $f \circ h = 0$. Mais $h : [0,1] \to [0,1]$ est surjective : il en résulte rapidement que f est nulle. Ainsi T est injectif.

Exercice 7 (Intersection d'hyperplans)

Soient E un espace vectoriel sur \mathbbm{k} de dimension $n, p \ge 1$ entier, (f_1, \dots, f_p) une famille de $E^* = \mathcal{L}(E, \mathbbm{k})$ et

$$f = \begin{pmatrix} E & \longrightarrow & \mathbb{k}^p \\ x & \longmapsto & (f_1(x), \dots, f_p(x)) \end{pmatrix}.$$

- 1. Démontrer que f est surjective si et seulement si (f_1, \ldots, f_p) est une famille libre de E^* .
- 2. Démontrer que : $\ker f = \bigcap_{1 \leqslant i \leqslant p} \ker f_i$.
- 3. En déduire la dimension de $\bigcap_{1\leqslant i\leqslant p}\ker f_i$ lors que f est surjective.
 - 1. Supposons que φ soit surjective. Soient $\alpha_1, \ldots, \alpha_p$ dans \mathbb{R} tels que :

$$\alpha_1 g_1 + \dots + \alpha_p g_p = 0.$$

Notons (e_1, \ldots, e_p) la base canonique de \mathbb{R}^p . Soit $i \in \{1, \ldots, p\}$. Le vecteur e_i admet un antécédent v_i dans E et, pour tout $j \in \{1, \ldots, p\}$ on a : $g_j(v_i) = \delta_{i,j}$. Ainsi, pour tout j dans $\{1, \ldots, p\}$, il vient :

$$0 = \sum_{i=1}^{p} \alpha_i g_i(v_j) = \alpha_j.$$

La famille (g_1, \ldots, g_p) est libre dans E^* .

• Supposons que la famille (g_1, \ldots, g_p) soit libre dans E^* . On raisonne par l'absurde et on suppose que φ n'est pas surjective : on a donc dim Im $f \leq p-1$. Ainsi Im φ est inclus dans un hyperplan H de \mathbb{R}^p .

On considère alors une équation $a_1x_1 + \cdots + a_px_p = 0$ de cet hyperplan H, où a_1, \ldots, a_p sont des réels **non tous nuls**.

On a alors, pour tout $x \in E$, $\varphi(x) \in H$, donc :

$$a_1g_1(x) + \dots + a_pg_p(x) = 0.$$

Il en résulte que $a_1g_1 + \cdots + a_pg_p = 0$, ce qui contredit notre hypothèse sur la liberté de la famille (g_1, \dots, g_p) .

- 2. On a de suite : $\ker \varphi = \bigcap_{1 \le i \le n} \ker g_i$.
- 3. Si φ est surjective, le théorème du rang affirme que dim $\ker f = n p$.

Exercice 8 (Le lemme des cinq)

Soient E, F, G des espaces vectoriels et $f: E \to F, g: F \to G$ des applications linéaires. On dit que la suite :

$$E \xrightarrow{f} F \xrightarrow{g} G$$

est exacte lorsque Im $f = \ker g$. On considère « l'échelle » suivante d'espaces vectoriels et d'applications linéaires où les lignes sont exactes et où les carrés sont commutatifs :

$$E_{1} \xrightarrow{f_{1}} E_{2} \xrightarrow{f_{2}} E_{3} \xrightarrow{f_{3}} E_{4} \xrightarrow{f_{4}} E_{5}$$

$$\downarrow \varphi_{1} \qquad \downarrow \varphi_{2} \qquad \downarrow \varphi_{3} \qquad \downarrow \varphi_{4} \qquad \downarrow \varphi_{5}$$

$$F_{1} \xrightarrow{g_{1}} F_{2} \xrightarrow{g_{2}} F_{3} \xrightarrow{g_{3}} F_{4} \xrightarrow{g_{4}} F_{5}$$

On suppose que φ_1 , φ_2 , φ_4 et φ_5 sont des isomorphismes. Montrer que φ_3 est un isomorphisme.

• Montrons que φ_3 est surjective. On veut donc démontrer que tout élément y_3 de E_3 admet un antécédent par φ_3 .

Fixons y_3 dans E_3 . Comme Im $g_3 = \ker g_4$ on a :

$$g_4 \circ g_3(y_3) = 0 \quad (\heartsuit)$$

Mais φ_4 est un isomorphisme : il existe donc x_4 dans E_4 tel que $g_3(y_3) = \varphi_4(x_4)$. Avec (\heartsuit) on obtient alors : $g_4 \circ \varphi_4(x_4) = 0$.

Comme les carrés sont commutatifs, il vient $\varphi_5 \circ f_4(x_4) = 0$. Mais φ_5 est un isomorphisme donc $f_4(x_4) = 0$ et ainsi $x_4 \in \ker f_4 = \operatorname{Im} f_3$: il existe alors $x_3 \in E_3$ tel que $f_3(x_3) = x_4$.

On a alors $\varphi_4 \circ f_3(x_3) = \varphi_4(x_4) = g_3(y_3)$. Par commutativité des carrés, il vient :

$$g_3 \circ \varphi_3(x_3) = g_3(y_3)$$

donc, par linéarité de g_3 , on peut dire que $y_3 - \varphi_3(x_3)$ est dans $\ker g_3 = \operatorname{Im} g_2$. On dispose alors de $y_2 \in F_2$ tel que

$$g_2(y_2) = y_3 - \varphi_3(x_3) \quad (\heartsuit \heartsuit)$$

Comme φ_2 est un isomorphisme, il existe $x_2 \in E_2$ tel que $\varphi_2(x_2) = y_2$ et ainsi, avec $(\heartsuit \heartsuit)$, on obtient :

$$g_2 \circ \varphi_2(x_2) = y_3 - \varphi_3(x_3)$$

Les carrés étant commutatifs, on a donc $\varphi_3 \circ f_2(x_2) = y_3 - \varphi_3(x_3)$ et ainsi, par linéarité de φ_3 il vient le résultat tant attendu et que l'on n'espérait plus :

$$y_3 = \varphi_3(f_2(x_2) + x_3)$$

ce qui démontre que φ_3 est bien surjective.

• L'injectivité de φ_3 se traite de la même manière...

Exercices supplémentaires

Exercice 9

Soit E un espace vectoriel sur \mathbbm{k} de dimension finie $n \ge 1$. Démontrer que $\operatorname{Im} f$ admet un supplémentaire f-stable si et seulement si $\operatorname{Im} f \cap \ker f = \{0\}$ et que dans ce cas $\ker f$ est l'unique supplémentaire f-stable de $\operatorname{Im} f$.

• Supposons que que Im f admet un supplémentaire f-stable que l'on note F et montrons qu'alors $F = \ker f$ (ce qui démontrera que Im $f \cap \ker f = \{0\}$ puisque la somme Im f + F est directe). Soit x dans F. Comme F est f-stable, $f(x) \in F$. Ainsi $f(x) \in \operatorname{Im} f \cap F = \{0\}$ donc $x \in \ker f$ et on a déjà l'inclusion $F \subset \ker f$.

Puis le théorème du rang affirme que dim $\ker f = n - \dim \operatorname{Im} f$ et de $E = \operatorname{Im} f \oplus F$ on tire $\dim F = n - \dim \operatorname{Im} f$. Il en résulte que $\ker f$ et F ont même dimension et avec $F \subset \ker f$ on obtient : $\ker f = F$.

• Supposons maintenant que $\operatorname{Im} f \cap \ker f = \{0\}$ et montrons que f admet un supplémentaire f-stable. Le théorème du rang affirme que $n = \dim \operatorname{Im} f + \dim \ker f$; comme $\operatorname{Im} f \cap \ker f = \{0\}$ on en déduit que :

$$E = \operatorname{Im} f \oplus \ker f$$

Il ne reste plus qu'à démontrer que ker f est f stable ce qui ne pose pas de problème. \square

Exercice 10 (Un résultat de factorisation)

Soient E, F et G des espaces vectoriels sur \mathbbm{k} de dimensions finies, $f \in \mathcal{L}(E, G)$ et $g \in \mathcal{L}(F, G)$. Les deux propriétés suivantes sont équivalentes.

- (i) Il existe $h \in \mathcal{L}(E, F)$ tel que $g \circ h = f$
- (ii) Im $f \subset \text{Im } g$.
- $(i) \Rightarrow (ii)$. Supposons qu'il existe $h \in \mathcal{L}(E, F)$ tel que $g \circ h = f$ et montrons que Im $f \subset \operatorname{Im} g$. Soit $y \in \operatorname{Im} f$. Il existe alors x dans E tel que f(x) = y donc $g \circ h(x) = y$ et ainsi g(h(x)) = y. Il en résulte que y admet un antécédent par g (qui est h(x)) donc $y \in \operatorname{Im} g$. On a donc bien $\operatorname{Im} f \subset \operatorname{Im} g$.
- $(ii) \Rightarrow (i)$. Supposons Im $f \subset \text{Im } g$ et montrons qu'il existe $h \in \mathcal{L}(E, F)$ tel que $g \circ h = f$. On est rusé comme un singe et on se rappelle que pour définir une application linéaire il suffit de la définir sur une base.

Notons (e_1, \ldots, e_n) une base de E. Comme Im $f \subset \text{Im } g$, alors pour tout i dans $\{1, \ldots, n\}$ on a $f(e_i) \in \text{Im } g$ et ainsi il existe v_i dans F tel que $f(e_i) = g(v_i)$.

Soit h l'unique élément de $\mathcal{L}(E,F)$ tel que $h(e_i) = v_i$ pour tout $i \in \{1,\ldots,n\}$. On a alors :

$$f(e_i) = g \circ h(e_i)$$
 pour tout $i \in \{1, \dots, n\}$

et ainsi par linéarité il vient : $f = g \circ h$.

Exercice 11

Soit $f: \mathbb{R}[X] \to \mathbb{R}[X]$ définie par : f(P) = P(X+1) - P(X).

- 1. Démontrer que f est un endomorphisme de $\mathbb{R}[X]$
- 2. Déterminer $\ker f$.
- 3. Montrer que pour tout $n \ge 1$ entier on a : $f(\mathbb{R}_n[X]) = \mathbb{R}_{n-1}[X]$. En déduire Im f.
- 4. Soit F l'ensemble des polynômes P de $\mathbb{R}[X]$ tels que P(0) = 0. Montrer que F est un sous-espace vectoriel de $\mathbb{R}[X]$ puis que ker f et F sont supplémentaires dans $\mathbb{R}[X]$.

- 1. Pour le lecteur.
- 2. Soit $P \in \ker f$. On a alors P(X+1) = P(X). Ainsi, pour tout $k \in \mathbb{N}$ il vient P(k+1) = P(k) et une récurrence immédiate (à écrire) donne P(k) = P(0) pour tout $k \in \mathbb{N}$. Ainsi, le polynôme Q = P P(0) admet une infinité de racines : c'est le polynôme nul. Il en résulte que P est constant.
 - Les polynômes constant sont dans $\ker f$.

Conclusion. $\ker f = \mathbb{R}_0[X].$

- 3. Question subtile et très jolie!
 - Soit $n \ge 1$ entier. Soit $P \in \mathbb{R}_n[X]$. En écrivant $P = \sum_{k=0}^n a_k X^k$, on a :

$$f(P) = \sum_{k=0}^{n} a_k (X+1)^k - \sum_{k=0}^{n} a_k X^k$$

$$= \sum_{k=0}^{n} a_k \sum_{i=0}^{k} {k \choose i} X^i - \sum_{k=0}^{n} a_k X^k$$

$$= a_n X^n + \sum_{k=0}^{n-1} a_k \sum_{i=0}^{k} {k \choose i} X^i - a_n X^n - \sum_{k=0}^{n-1} a_k X^k \in \mathbb{R}_{n-1}[X]$$

Ainsi, puisque $\mathbb{R}_{n-1}[X] \subset \mathbb{R}_n[X]$, on peut dire que $\mathbb{R}_n[X]$ est stable par f. Notons alors f_n l'endomorphisme induit par f sur $\mathbb{R}_n[X]$. On a clairement Im $f_n \subset \mathbb{R}_{n-1}[X]$ d'après ce qui précède. De plus, le théorème du rang donne :

$$\dim \operatorname{Im} f_n = \dim \operatorname{IR}_n[X] - \dim \ker f_n.$$

Mais il est immédiat de vérifier que $\ker f_n = \ker f \cap \mathbb{R}_n[X] = \mathbb{R}_0[X]$ qui est de dimension 1. Il en résulte que $\operatorname{Im} f_n$ est de dimension n. Comme $\operatorname{Im} f_n \subset \mathbb{R}_{n-1}[X]$, on peut conclure que $\operatorname{Im} f_n = \mathbb{R}_{n-1}[X]$. Cela répond à la première partie de la question puisque $\operatorname{Im} f_n = f(\mathbb{R}_n[X])$.

- Prenons maintenant $Q \in \mathbb{R}[X]$. Il existe alors $N \in \mathbb{N}$ tel que $Q \in \mathbb{R}_N[X]$ et ainsi $Q \in \text{Im } f_{n+1}$. Il existe alors $P \in \mathbb{R}_{N+1}[X]$ tel que $Q = f_{N+1}(P) = f(P)$, de sorte que $\mathbb{R}[X] \subset \text{Im } f$. L'inclusion réciproque étant évidente, $\text{Im } f = \mathbb{R}[X]$ (ce qui prouve que f est surjectif).
- 4. Soit $\delta_0 : \mathbb{R}[X] \to \mathbb{R}$ définie par $\delta_0(P) = P(0)$. Cette application est linéaire et $F = \ker \delta_0$ donc F est un sous-espace vectoriel de $\mathbb{R}[X]$.
 - Supposons que $\mathbb{R}[X] = F + \ker f$. Soit $P \in \mathbb{R}[X]$. On peut donc écrire P = Q + R avec $Q \in F$ et $R \in \ker f = \mathbb{R}_0[X]$. Ainsi P(0) = R(0), puisque $Q \in F$. Il vient donc, comme R est constant R = P(0) et Q = P P(0).

Conclusion partielle : si $\mathbb{R}[X] = F + \ker f$ alors $\mathbb{R}[X] = F \oplus \ker f$.

• Soit $P \in \mathbb{R}[X]$. On pose Q = P - P(0) et R = P(0). On a de suite P = Q + R ainsi que $Q \in F$ et $R \in \ker f$. Il en résulte que $\mathbb{R}[X] = F + \ker f$.

Conclusion. $\mathbb{R}[X] = F \oplus \ker f$.

Exercice 12

Soit A dans $\mathcal{M}_3(\mathbb{R})$ telle que $A \neq 0$ et $A^2 = 0$.

- 1. Démontrer que A est semblable à $J = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.
- 2. Vérifier que $\mathcal{F} = \{M \in \mathcal{M}_3(\mathbb{R}) \mid AM + MA = 0\}$ est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$ et déterminer sa dimension.

4

1. Soit f l'endomorphisme de \mathbb{R}^3 canoniquement associé A. On a $f \neq 0$ et $f^2 = 0$. Il existe donc $a \in \mathbb{R}^3$ tel que $f(a) \neq 0$ et on a Im $f \subset \ker f$. Cette dernière inclusion implique que $\ker f$ est de dimension 2 en utilisant le théorème du rang. Puis $f(a) \in \ker f$, puisque $f^2 = 0$. On complète f(a) en une base (f(a), b) de $\ker f$.

J'affirme alors que la famille $\beta = (f(a), c, a)$ est une base de \mathbb{R}^3 . En effet, supposons que α, β, γ dans \mathbb{R}^3 vérifient :

$$\alpha f(a) + \beta c + \gamma a = 0.$$

En appliquant f, il vient : $\gamma f(a) = 0$. Comme $f(a) \neq 0$, on a $\gamma = 0$ et ainsi :

$$\alpha f(a) + \beta c = 0.$$

Mais la famille (f(a), c) est libre, donc $\alpha = \beta = 0$.

Il en résulte que β est une famille libre de trois vecteurs dans un espace de dimension 3 : c'est une base de \mathbb{R}^3 . Mais la matrice de f dans β est exactement la matrice J : celle-ci est donc semblable à A

- 2. L'application $g: \mathcal{M}_3(\mathbb{R}) \to \mathcal{M}_3(\mathbb{R})$ définie par g(M) = AM + MA est linaire : son noyau, qui est \mathcal{F} , est donc un sous-espace vectoriel de \mathbb{R}^3 .
 - Selon la question précédente, A et J sont semblables : il existe $P \in GL_3(\mathbb{R})$ telle que $A = PJP^{-1}$. De plus l'application $\varphi : \mathcal{M}_3(\mathbb{R}) \to \mathcal{M}_3(\mathbb{R})$ définie par $\varphi(M) = P^{-1}MP$ est un isomorphisme linéaire. En effet, la linéarité est immédiate (à écrire!) et si $\psi : M \mapsto PMP^{-1}$ l'application $\varphi \circ \psi$ est l'identité de $\mathcal{M}_3(\mathbb{R})$.

Pour $N \in \mathcal{M}_3(\mathbb{R})$ on a les équivalences :

$$\begin{split} M \in \mathcal{F} &\iff AM + MA = 0 \\ &\Leftrightarrow PJP^{-1}M + MPJP^{-1} = 0 \\ &\Leftrightarrow JP^{-1}MP + P^{-1}MPJ = 0 \\ &\Leftrightarrow J\varphi(M) + \varphi(M)J = 0 \end{split}$$

Il en résulte que $\varphi(\mathcal{F}) = \mathcal{G} = \{N \in \mathcal{M}_3(\mathbb{R}) \mid NJ + JN = 0\}$. Comme φ est un isomorphisme, $\dim \mathcal{F} = \dim \mathcal{G}$.

Prenons alors $N \in \mathcal{M}_3(\mathbb{R})$. On a :

$$\begin{split} N \in \mathcal{G} & \Leftrightarrow & JN + NJ = 0 \\ & \Leftrightarrow & \begin{pmatrix} (N)_{3,1} & (N)_{3,2} & (N)_{3,3} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & (N)_{1,1} \\ 0 & 0 & (N)_{1,2} \\ 0 & 0 & (N)_{1,3} \end{pmatrix} = 0 \end{split}$$

On peut donc conclure que \mathcal{G} est l'ensemble des matrices $N \in \mathcal{M}_3(\mathbb{R})$ telles que :

$$\begin{cases} (N)_{3,1} &= 0\\ (N)_{3,2} &= 0\\ (N)_{3,3} + (N)_{1,1} &= 0\\ (N)_{1,2} &= 0\\ (N)_{1,3} &= 0 \end{cases}$$

Une matrice de \mathcal{G} est donc décrite par 9-5=4 paramètres : dim $\mathcal{G}=4$ et dim $\mathcal{F}=4$.

Exercice 13

Soit u un endomorphisme d'un espace vectoriel E de dimension n sur \mathbb{R} . On suppose que u est de rang 1.

- 1. Montrer qu'il existe un nombre λ réel tel que $u^2 = \lambda u$.
- 2. Montrer que si $\lambda \neq 1$, $u \mathrm{Id}_E$ est inversible et déterminer son inverse.

- 1. Comme u est de rang 1, dim Im u = 1.
 - Supposons que $\operatorname{Im} u \cap \ker u = \{0\}$. Vie le théorème du rang on a dim $\operatorname{Im} u + \dim \ker u = n$ donc

$$E = \operatorname{Im} u \oplus \ker u$$

On prend alors (e_1) base de $\operatorname{Im} u$ et $\{e_2,\ldots,e_n\}$ base de $\ker u$. La famille :

$$\beta = \{e_1, \dots, e_n\}$$

est alors une base de E. Puis $u(e_1) \in \text{Im } u = \text{vect}(e_1)$ donc il existe λ réel tel que $u(e_1) = \lambda e_1$ et ainsi :

$$A = [u]_{\beta} = \begin{pmatrix} \lambda & 0 & \cdots & 0 \\ 0 & 0 & \cdots & \vdots \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 \end{pmatrix}$$

On a alors
$$A^2 = \begin{pmatrix} \lambda^2 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & \vdots \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 \end{pmatrix} = \lambda \begin{pmatrix} \lambda & 0 & \cdots & 0 \\ 0 & 0 & \cdots & \vdots \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 \end{pmatrix} = \lambda A.$$

et ainsi $u^2 = \lambda u$

• Si maintenant Im $u \cap \ker u$ contient un vecteur non nul e_1 alors ce vecteur engendre Im u et on a donc Im $u \subset \ker u$ de sorte que $u^2 = 0$: il existe bien λ réel tel que $u^2 = \lambda u$.

Autre méthode.

Comme Im u est de dimension 1, on peut écrire Im $(u) = \text{vect}(\varepsilon)$ où ε est un vecteur fixé de E. On a alors $u(\varepsilon) \in \text{Im } u$, et ainsi il existe λ dans \mathbbm{R} tel que $u(\varepsilon) = \lambda \varepsilon$.

Prenons maintenant x dans E. Comme $u(x) \in \text{Im } u$ on dispose de α_x réel tel que $u(x) = \alpha_x \varepsilon$. On a alors :

$$u^{2}(x) = u(u(x)) = u(\alpha_{x}\varepsilon) = \alpha_{x}u(\varepsilon) = \lambda\alpha_{x}\varepsilon = \lambda u(x)$$

Ceci étant valable pour tout x dans E on a bien $u^2 = \lambda u$.

2. Posons $v = u - \text{Id}_E$. On cherche un polynôme annulateur de v avec terme constant non nul. On a :

$$v^2 = u^2 - 2u + \text{Id}_E = \lambda u - 2u + \text{Id}_E = (\lambda - 2)u - (\lambda - 2)\text{Id}_E + (\lambda - 2)\text{Id}_E + \text{Id}_E$$

= $(\lambda - 2)v + (\lambda - 1)\text{Id}_2$

donc $v^2 - (\lambda - 2)v - (\lambda - 1)\mathrm{Id}_E = 0$. Il en résulte, puisque $\lambda - 1 \neq 0$ que :

$$v \circ \left(\frac{1}{\lambda - 1} \left(v - (\lambda - 2) \operatorname{Id}_{E}\right)\right) = \operatorname{Id}_{E} = \left(\frac{1}{\lambda - 1} \left(v - (\lambda - 2) \operatorname{Id}_{E}\right)\right) \circ v$$

Comme $\frac{1}{\lambda-1}(v-(\lambda-2)\mathrm{Id}_E)\in\mathcal{L}(E)$, on peut donc dire que v est inversible avec :

$$v^{-1} = \frac{1}{\lambda - 1} \left(v - (\lambda - 2) \operatorname{Id}_E \right).$$

Exercice 14

Soit E un espace vectoriel sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} de dimension $n \ge 2$. Soit f dans $\mathcal{L}(E)$ qui n'est pas une homothétie.

Démontrer qu'il existe une base β de E telle que la première colonne de la matrice de f dans β soit $\begin{bmatrix} 1 \\ 0 \\ \vdots \end{bmatrix}$.

Avec le lemme de Schur (à redémontrer!), comme f n'est pas une homothétie, il existe $x_0 \in E$ tel que $(x_0, f(x_0))$ soit une famille libre. On complète cette famille en une base β de E: cette base convient.

Exercice 15

Pour $k \in \{0, ..., 3\}$ on considère la fonction $f_k : \mathbb{R} \to \mathbb{R}$ définie par : $f_k(x) = x^k e^x$. On pose $\mathcal{F}_3 = \text{vect}(f_0, f_1, f_2, f_3)$.

- 1. Déterminer une base β de \mathcal{F}_3 .
- 2. Soient α réel et Φ l'application qui à f dans \mathcal{F}_3 associe : $\Phi(f): x \mapsto \int_{\alpha}^{x} f(t) dt$. Démontrer que Φ n'est pas un endomorphisme de \mathcal{F}_3 .
- 3. Soit Ψ l'application qui à f dans \mathcal{F}_3 associe : $\Psi(f): x \mapsto \int_{-\infty}^x f(t) dt$. Démontrer que ψ est un endomorphisme de \mathcal{F}_3 et préciser la matrice de Ψ dans β .
 - 1. La famille $\beta = (f_0, f_1, f_2, f_3)$ est libre. En effet, soient $\lambda_0, \lambda_1, \lambda_2, \lambda_3$ des réels tels que :

$$\sum_{i=0}^{3} \lambda_i f_i = 0.$$

Pour tout x réel on a alors $\sum_{i=0}^{3} \lambda_i x^i e^x = 0$ et comme $\exp > 0$, il vient : $\sum_{i=0}^{3} \lambda_i x^i = 0$.

Il en résulte que le polynôme $\sum_{i=0}^{3} \lambda_i X^i$ a une infinité de racines : il est nul, et donc tous ses coefficients sont nuls.

Ainsi $\lambda_0 = \lambda_1 = \lambda_2 = \lambda_3 = 0$.

La famille β est donc libre et engendre \mathcal{F}_3 : c'est une base de \mathcal{F}_3 .

2. Soient α réel et Φ l'application qui à f dans \mathcal{F}_3 associe : $\Phi(f): x \mapsto \int_{\alpha}^{x} f(t) dt$.

Démontrer que Φ n'est pas un endomorphisme de \mathcal{F}_3 .

- Notons que Φ est linéaires de $\mathcal{C}(\mathbbm{R}, \mathbbm{R})$ dans $\mathbbm{R}^{\mathbbm{R}}$ (cela résulte sans trop de difficultés de la linéarité de l'intégrale...).
- \bullet On a, pour tout x réel :

$$\Phi(f_0)(x) = \int_{\alpha}^{x} e^t dt = e^x - e^{\alpha} = f_0(x) - e^{\alpha}.$$

Mais la fonction constante strictement positive $x \mapsto e^{\alpha}$ n'est pas dans $\mathcal{F}_3 : \Phi(f_0) \notin \mathcal{F}_3$.

En effet, pour tout $k \in \mathbb{N}$, on a : $x^k e^{x-\alpha} \longrightarrow_{x \to -\infty} 0$. Ainsi les éléments de \mathcal{F}_3 ont une limite nulle en $-\infty$ (par règle opératoire sur les limites). On peut donc en conclure qu'aucune fonction constante non nulle n'est dans \mathcal{F}_3 .

Il en résulte que Φ n'est pas un endomorphisme de F_3 .

3. • Montrons que Ψ est linéaire. Soient f, g dans \mathcal{F}_3 et λ réel. Pour tout x réel on a :

$$\Psi(f + \lambda g)(x) = \int_{-\infty}^{x} (f + \lambda g)(t) dt = \int_{-\infty}^{x} f(t) dt + \lambda \int_{-\infty}^{x} g(t) dt$$
$$= \Psi(f)(x) + \lambda \Psi(g)(x)$$

7

Ainsi $\Psi(f + \lambda g) = \Psi(f) + \lambda \Psi(g)$.

• Déterminons, pour tout k dans $\{0,\ldots,4\}, \Psi(f_k)$.

Pour tout
$$x$$
 réel on a $\Psi(f_0)(x) = \int_{-\infty}^x e^t dt = e^x donc \ \Psi(f_0) = f_0.$

Puis, fixons k dans $\{1, 2, 3\}$. Pour tout x réel on a :

$$\Psi(f_k)(x) = \int_{-\infty}^x t^k e^t dt \underbrace{=}_{IPP} \left\{ t^k e^t \right\}_{-\infty}^x - k \int_{-\infty}^x t^{k-1} e^t dt$$
$$= x^k e^x - k \int_{-\infty}^x t^{k-1} e^t dt$$

De là $\Psi(f_k) = f_k - k\Psi(f_k - 1)$. Il vient donc :

- $\Psi(f_1) = f_1 \Psi(f_0) = f_1 f_0$
- $\Psi(f_2) = f_2 2\Psi(f_1) = f_2 2(f_1 f_0)$
- $\Psi(f_3) = f_3 3\Psi(f_2) = f_3 3f_2 + 6f_1 6f_0$.

Less images des éléments de β par Ψ appartiennent donc à \mathcal{F}_3 : Ψ est un endomorphisme de \mathcal{F}_3 .

La matrice de
$$\Psi$$
 dans β est alors : $[f]_{\beta} = \begin{pmatrix} 1 & -1 & 2 & -6 \\ 0 & 1 & -2 & 6 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.

Exercice 16

Soient m un entier naturel strictement supérieur à 2, n un entier naturel non nul et strictement inférieur à $\frac{m}{2}$. On note J l'ensemble des entiers naturels inférieurs ou égaux à m. Soit $A = X^n + a_{n-1}X^{n-1} + ... + a_1X + a_0 \in \mathbb{R}[X]$. On note I un intervalle de \mathbb{R} d'intérieur non vide sur lequel A ne s'annule pas. Pour tout $P \in \mathbb{R}_m[X]$ on note f(P) le polynôme de $\mathbb{R}[X]$: f(P) = AP' - PA'.

- 1. a) Soit $P \in \mathbb{R}_m[X]$. Déterminer en fonction de m et n la valeur maximale p du degré du polynôme f(P).
 - b) Montrer que f est une application linéaire de $\mathbb{R}_m[X]$ dans $\mathbb{R}_p[X]$.
 - c) Soit Q un polynôme de $\mathbb{R}[X]$ tel que QA soit élément de $\mathbb{R}_m[X]$. Déterminer f(QA).
 - d) Montrer qu'un polynôme P de $\mathbb{R}_m[X]$ est dans ker f, le noyau de f, si et seulement si pour tout $x \in I$
 - e) Déterminer le rang de f.
- 2. Pour tout i élément de J, on pose $Y_i = f(X^i)$.
 - a) Montrer que la famille de polynômes $(Y_i)_{i\in J\setminus\{n\}}$ est une base de Im f, l'image de f.
 - b) En calculant f(A), déterminer les coordonnées de Y_n dans cette base.
- 3. a) Pour tout $i \in J$, étudier le degré du polynôme Y_i .
 - b) Déterminer la valeur minimale du degré d'un polynôme S non nul de Im f.
 - i) En utilisant la question 1)c), montrer que tout polynôme de $\mathbb{R}_p[X]$ divisible par A^2 appartient à $\operatorname{Im} f$.
 - ii) En déduire qu'un polynôme S de $\mathbb{R}_p[X]$ appartient à Im f si et seulement si le reste R de la division euclidienne de S par A^2 appartient à Im f.
 - iii) Pour tout polynôme S de Im f, déterminer alors la valeur maximale du degré de R.
- 4. Soit $P \in \mathbb{R}_m[X]$. Déterminer l'ensemble des primitives sur I de $x \mapsto \frac{S(x)}{(A(x))^2}$ avec S = f(P).
- 5. Dans cette question, m est un entier naturel strictement supérieur à 6 et $A=X^3-X+1$.

 - a) Calculer Y_0 , Y_1 et Y_2 et montrer que le polynôme $S=X^4+4X^3-2X^2-2X-1$ est élément de Im f. b) Déterminer une primitive sur I de $x\mapsto \frac{x^4+4x^3-2x^2-2x-1}{\left(x^3-x+1\right)^2}$.
 - 1. a. f(P) = AP' PA' est au plus de degré deg $A + \deg P 1 \le n + m 1$. Cette valeur est atteinte pour $P = X^m$ car le terme de plus haut degré de $f(X^m)$ est $mX^nX^{m-1} - nX^{n-1}X^m =$ $(m-n)X^{n+m-1}$ qui est de degré m+n-1 (car on a $m-n\neq 0$ puisque $m<\frac{n}{2}$).

8

Conclusion : La valeur maximale du degré de f(P) est donc p = m + n - 1

b. Par définition de p à la question précédente, on a $f: \mathbb{R}_m[X] \to \mathbb{R}_p[X]$. La linéarité de f est immédiate (mais à vérifier).

Conclusion : f est une application linéaire de $\mathbb{R}_m[X]$ vers $\mathbb{R}_p[X]$

c. Si $Q \in \mathbb{R}[X]$ est tel que $QA \in \mathbb{R}_m[X]$ alors on a :

$$f(QA) = A(QA)' - (QA)A' = Q'A^2$$

d. Soit P dans $\mathbb{R}_m[X]$. Alors $P \in \ker f$ si et seulement si AP' - PA' = 0 i.e. (puisque I est infini) si et seulement si pour tout $x \in I$ on a A(x) P'(x) - P(x) A'(x) = 0.

Puisque A ne s'annule pas sur I cette dernière assertion est équivalente à : pour tout $x \in I$, A(x) P'(x) - P(x) A'(x) $(A(x))^2$

ce qui signifie exactement que pour tout $x \in I$, $\left(\frac{P}{A}\right)'(x) = 0$.

Il vient donc $P \in \ker f$ si et seulement si (puisque I est un intervalle) il existe $\lambda \in \mathbb{R}$ tel que pour tout $x \in I$ on a $\frac{P(x)}{A(x)} = \lambda$ si et seulement si il existe $\lambda \in \mathbb{R}$ tel que pour tout $x \in I$ on a $P(x) = \lambda A(x)$ i.e. (car I est infini) il existe $\lambda \in \mathbb{R}$ tel que $P = \lambda A$.

Conclusion: $\ker f = \operatorname{vect}(A)$

- e. D'après la formule du rang, et comme on vient de voir que dim ker f=1 (car $A\neq 0$), il vient que $|\operatorname{rg}(f)| = \dim \mathbb{R}_m [X] - 1 = m$.
- a. La famille $(1, X, ..., X^{n-1}, A, X^{n+1}, ..., X^m)$ est une base de $\mathbb{R}_m[X]$ car les degrés sont échelonnés de 0 à m. Il vient :

$$\begin{split} \operatorname{Im} f &= \operatorname{vect} \left(f\left(1\right), f\left(X\right), ..., f\left(X^{n-1}\right), f\left(A\right), f\left(X^{n+1}\right), ..., f\left(X^{m}\right) \right) \\ &= \operatorname{vect} \left(f\left(1\right), f\left(X\right), ..., f\left(X^{n-1}\right), 0, f\left(X^{n+1}\right), ..., f\left(X^{m}\right) \right) \\ &= \operatorname{vect} \left(f\left(X^{i}\right) \right)_{i \in J \backslash \{n\}} = \operatorname{vect} \left(Y_{i}\right)_{i \in J \backslash \{n\}} \end{split}$$

la famille de m-1 vecteurs $(Y_i)_{i\in J\setminus\{n\}}$ engendre donc $\mathrm{Im}\, f$ qui est de dimension m-1, donc

$$\boxed{\left(f\left(X^{i}\right)\right)_{i\in J\setminus\{n\}}=\left(Y_{i}\right)_{i\in J\setminus\{n\}}\text{ est une base de Im }f}.$$

b. On a f(A) = 0 d'une part. Or d'autre part :

$$f(A) = f(X^{n} + a_{n-1}X^{n-1} + \dots + a_{1}X + a_{0})$$

$$= f(X^{n}) + a_{n-1}f(X^{n-1}) + \dots + a_{1}f(X) + a_{0}f(1)$$

$$= Y_{n} + a_{n-1}Y_{n-1} + \dots + a_{1}Y_{1} + a_{0}Y_{0}$$

3. a. Pour tout $i \in J$ on a $Y_i = iAX^{i-1} - A'X^i$ qui est un polynôme de degré au plus $n + iAX^i$ $i-1 \ (\geq \ 0 \ {\rm car} \ n \ \geq \ 1)$ et dont le terme de degré n+i-1 est $(i-n) \, X^{n+i-1}$. Ainsi pour tout $i \in J \setminus \{n\}$ Y_i est de degré $n + i - 1 \mid (\operatorname{car} i - n \neq 0)$.

Maintenant pour i = n on a $Y_n = -a_0Y_0 - a_1Y_1 - \dots - a_{n-1}Y_{n-1}$ et (on vient de le dire) $\deg Y_0 = n - 1 < \deg Y_1 = n < \dots < \deg Y_{n-1} = 2n - 2$. Ainsi :

— **premier cas**, $a_0 = ... = a_{n-1} = 0$ (i.e. $A = X^n$) alors $Y_n = 0$ et $| \deg Y_n = -\infty |$

9

deuxième cas, il existe $k \in \{0,...,n-1\}$ tel que $a_k \neq 0$ (i.e. $A \neq X^n$) alors $\deg Y_n = n - 1 + \max \{ k \in \{0, ..., n - 1\} / a_k \neq 0 \}$

b. Si
$$S \in (\text{Im } f) \setminus \{0\}$$
, alors $S = \sum_{\substack{i=0 \ i \neq n}}^m b_i Y_i$ où $(b_0, ..., b_{n-1}, b_{n+1}, ..., b_m) \in \mathbb{R}^m \setminus \{0\}$; or

$$\deg Y_0 = n-1 < \dots < \deg Y_{n-1} = 2n-2 < \underbrace{\deg Y_{n+1}}_{=2n}$$
 $< \dots < \deg Y_m = n+m-1$

donc $\deg S = \deg Y_k \ (= n + k - 1)$ où $k = \max \{i \in J \setminus \{n\} \ / b_i \neq 0\}$; en particulier $\deg S \geq n - 1$. Comme de plus $\deg Y_0 = n - 1$ (et $Y_0 \in \operatorname{Im} f$), on peut donc dire que **la valeur minimale** du degré d'un polynôme non nul de Im f est n - 1.

c. i. Soit $P \in \mathbb{R}_p[X]$ divisible par A^2 . On dispose de $Q_1 \in \mathbb{R}[X]$ tel que

$$P = A^2 Q_1$$

Si on prend alors un polynôme Q de $\mathbb{R}\left[X\right]$ tel que $Q'=Q_1$ (Q est une primitive de Q_1), on a en premier lieu $QA\in\mathbb{R}_m\left[X\right]$ car deg P=2 deg $A+\deg Q_1\leq p$ donc deg $Q_1\leq p-2n$ d'où deg $Q\leq p-2n+1=m+n-1-2n+1=m-n$ et ainsi

$$\deg AQ = \deg A + \deg Q = n + \deg Q \le m$$

Il vient donc, avec la question 1.c. $f(AQ) = A^2Q' = A^2Q_1 = P$.

Conclusion. $P \in \text{Im } f$

ii. Soit $S \in \mathbb{R}_p[X]$. Soit R le reste de la division euclidienne de S par A^2 , Q le quotient. On a $S = A^2Q + R$. Comme $S \in \mathbb{R}_p[X]$ on a $A^2Q \in \mathbb{R}_p[X]$, et A^2Q est divisible par A^2 , donc, avec la question précédente, $A^2Q \in \operatorname{Im} f$. Ainsi:

$$S \in \operatorname{Im} f \Leftrightarrow S - A^2 Q \in \operatorname{Im} f \Leftrightarrow R \in \operatorname{Im} f$$

iii. Soit $S \in \text{Im } f$. R étant le reste de la division euclidienne de S par A^2 on a $\deg R < \deg A^2 = 2n$. De plus $R \in \text{Im } f$ donc R est combinaison linéaire de Y_i avec $i \in J \setminus \{n\}$ on a une famille $(b_i)_{i \in J \setminus \{n\}}$ de réels tels que $R = \sum_{\substack{i=0 \ i \neq n}}^m b_i Y_i$. Mais comme

$$\deg Y_0 = n-1 < \deg Y_1 = n < \dots < \deg Y_{n-1} = 2n-2$$

$$< \deg Y_{n+1} = 2n < \dots < \underbrace{\deg Y_m}_{=n+m-1}$$

et que deg $R \leq 2n-1$, il vient que $b_{n+1} = \dots = b_m = 0$ et donc que $R = \sum_{i=0}^{n-1} b_i Y_i$ et donc deg $R \leq 2n-2$. Si on ajoute que pour $S = Y_{n-1}$ on a $R = Y_{n-1}$ de degré 2n-2, on en conclut que :

la valeur maximale du degré de
$$R$$
 est $2n-2$.

4. On a pour tout $x \in I$,

$$\frac{S\left(x\right)}{\left(A\left(x\right)\right)^{2}} \quad = \quad \frac{A\left(x\right)P'\left(x\right) - P\left(x\right)A'\left(x\right)}{\left(A\left(x\right)\right)^{2}} = \left(\frac{P}{A}\right)'\left(x\right)$$

donc les primitives sur I de $x\mapsto \frac{S\left(x\right)}{\left(\underbrace{A\left(x\right)}\right)^{2}}$ sont les fonctions de la forme :

$$x \mapsto \frac{P(x)}{A(x)} + \lambda \text{ où } \lambda \in \mathbb{R}.$$

5. a. On a: $-Y_0 = -A' = -3X^2 + 1$

$$\begin{split} - & Y_1 = A - A'X = \left(X^3 - X + 1\right) - \left(3X^2 - 1\right)X = -2X^3 + 1 \\ - & Y_2 = 2XA - A'X^2 \text{ donc :} \\ & Y_2 = 2X\left(X^3 - X + 1\right) - \left(3X^2 - 1\right)X^2 = -X^4 - X^2 + 2X. \end{split}$$
 et $S = X^4 + 4X^3 - 2X^2 - 2X - 1 = -\left(-X^4 - X^2 + 2X\right) - 2\left(-2X^3 + 1\right) + \left(-3X^2 + 1\right) \text{ donc } S = -Y_2 - 2Y_1 + Y_0 \text{ d'où } \boxed{S \in \operatorname{Im} f}. \end{split}$

b. Avec la question précédente on a $S = f(-X^2 - 2X + 1)$; une primitive sur I de $x \mapsto \frac{x^4 + 4x^3 - 2x^2 - 2x - 1}{\left(x^3 - x + 1\right)^2} = \frac{S(x)}{\left(A(x)\right)^2}$ est donc, avec la question 4)

$$x \mapsto \frac{-x^2 - 2x + 1}{x^3 - x + 1}$$

Exercice 17

Dans tout l'exercice, n et N désignent des entiers supérieurs à 2.

- 1. On note H_n l'ensemble des matrices de trace nulle de $\mathcal{M}_n(\mathbb{R})$.
 - a) Justifier que H_n est un hyperplan de $\mathcal{M}_n(\mathbb{R})$ et donner sa dimension.
 - b) Trouver un supplémentaire de H_n .
- 2. Soit E un espace vectoriel sur \mathbb{R} de dimension N et f une forme linéaire sur E.
 - a) Soit q une forme linéaire sur E. Montrer que les propriétés suivantes sont équivalentes.
 - (1) Il existe λ réel tel que $f = \lambda g$.
 - (2) $\ker g \subset \ker f$.
 - b) Démontrer par récurrence sur p que si g_1, \ldots, g_p sont des formes linéaires sur E telles que $\bigcap_{i=1}^p \ker g_i \subset \ker f$ alors $f \in \operatorname{vect}(g_1, \ldots, g_p)$.
 - c) On suppose dans cette question que n < N. En utilisant le théorème de la base incomplète, justifier que si g_1, \ldots, g_n sont des formes linéaires indépendantes sur E alors :

$$\dim\left(\bigcap_{i=1}^{n} \ker g_i\right) = N - n.$$

- 1. a) tr est une forme linéaire sur $\mathcal{M}_n(\mathbb{R})$, non nulle (puisque $\operatorname{tr}(I_n) = n$). Par le théorème du rang $H_n = \ker \operatorname{tr}$ est de dimension $n^2 1$.
 - b) Toute droite de $\mathcal{M}_n(\mathbb{R})$ engendrée par une matrice de trace non nulle est un supplémentaire de H_n . En particulier $\text{vect}(I_n)$ est un supplémentaire de H_n .

En effet, soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $\operatorname{tr}(A) \neq 0$.

- Si $M \in H_n \cap \text{vect}(A)$ alors tr(M) = 0 et il existe λ réel tel que $M = \lambda A$. Comme $\text{tr}(\lambda A) = \lambda \text{tr}(A)$, il vient $\lambda = 0$, puisque $\text{tr}(A) \neq 0$, et ainsi M = 0. De là : $H_n \cap \text{vect}(A) = \{0\}$.
- $-\dim \mathcal{M}_n(\mathbb{R}) = \dim H_n + \dim \operatorname{vect}(A)$ Ainsi $\mathcal{M}_n(\mathbb{R}) = H_n \oplus \operatorname{vect}(A)$.

2. a) • (1) \Rightarrow (2). On suppose qu'il existe λ réel tel que $f = \lambda g$. Si $x \in \ker g$ alors :

$$f(x) = \lambda g(x) = 0,$$

donc $x \in \ker f$.

• (2) \Rightarrow (1). On suppose $\ker g \subset \ker f$. Si $\ker g = E$, on a f = g = 0 et la conclusion est immédiate.

Sinon, il existe $x_0 \in E$ tel que $g(x_0) \neq 0$. On a alors facilement (à montrer) :

$$E = \ker g \oplus \operatorname{vect}(x_0).$$

Posons $h = f(x_0)g - g(x_0)f$. Soit $x \in E$. On écrit $x = y + \lambda x_0$ avec $\lambda \in \mathbb{R}$ selon la somme directe $E = \ker g \oplus \operatorname{vect}(x_0)$. Par hypothèse on a f(y) = 0 donc :

$$h(x) = f(x_0) \Big(\underbrace{g(y)}_{=0} + g(x_0)\Big) - g(x_0) \Big(\underbrace{f(y)}_{=0} + g(f_0)\Big) = 0.$$

Cela étant vrai quelque soit le choix de x dans E, il vient h=0 et ainsi :

$$f = \underbrace{\frac{f(x_0)}{g(x_0)}}_{\in \mathbb{R}} g.$$

- b) On considère, pour $p \in \mathbb{N}^*$, la propriété $\mathcal{P}(p)$: « Si F est une espace vectoriel réel de dimension finie, si f est une forme linéaire sur F et si g_1, \ldots, g_p sont des formes linéaires sur F telles $que \bigcap_{i=1}^{p} \ker g_i \subset \ker f \ alors \ f \in \operatorname{vect}(g_1, \dots, g_p). \$
 - La propriété $\mathcal{P}(1)$ est vraie, d'après la question précédente.
 - Supposons que $\mathcal{P}(p)$ soit vrai pour un certain entier naturel $p \geqslant 1$. Supposons que F est un espace vectoriel réel et que g_1, \ldots, g_{p+1} et f sont des formes linéaires sur F telles que $\bigcap_{i=1} \ker g_i \subset \ker f.$
 - Si g_{p+1} est la forme nulle alors $\ker g_{p+1} = F$ et alors $\bigcap_{i=1}^{p+1} \ker g_i = \bigcap_{i=1}^p \ker g_i$, donc $\bigcap_{i=1}^p \ker g_i \subset \ker f$. On peut donc appliquer l'hypothèse de récurrence d'où $f \in$ $\operatorname{vect}(g_1,\ldots,p_n) = \operatorname{vect}(g_1,\ldots,g_{p+1}).$
 - On suppose maintenant que g_{p+1} n'est pas la forme nulle. Alors ker g_{p+1} est un hyperplan de F. Pour $i \in \{1, ..., p\}$, on note h_i la restriction de g_i à $\ker g_{p+1}$, ainsi que h la restriction de f à ker g_{p+1} . Il s'agit de formes linéaires sur l'espace vectoriel de dimension finie $\ker g_{p+1}$.

Soit maintenant $x \in \ker g_{p+1}$.

On suppose que $x \in \bigcap_{i=1}^{p} \ker h_i$. On a alors $g_i(x) = h_i(x) = 0$ pour tout $i \in \{1, \dots, p\}$ donc $x \in \bigcap_{i=1}^{p+1} \ker g_i \subset \ker f$. Ainsi f(x) = 0 donc h(x) = 0.

donc
$$x \in \bigcap_{i=1}^{p+1} \ker g_i \subset \ker f$$
. Ainsi $f(x) = 0$ donc $h(x) = 0$.

Il en résulte que $\bigcap^{r} \ker h_i \subset \ker h$.

On applique l'hypothèse de récurrence avec l'espace vectoriel $\ker g_{p+1}.$ On a donc :

$$h \in \text{vect}(h_1, \dots, h_p)$$
: il existe ainsi $\alpha_1, \dots, \alpha_p$ dans \mathbb{R} tels que $h = \sum_{k=1}^p \alpha_i h_i$.

Pour tout $x \in \ker g_{p+1}$ on a donc :

$$f(x) - \sum_{k=1}^{p} \alpha_i g_i(x) = h(x) - \sum_{k=1}^{p} \alpha_i h_i(x) = 0,$$

de sorte que $\ker g_{p+1} \subset \ker \left(f - \sum_{k=1}^p \alpha_i g_i \right)$. D'après la question précédente, il existe α_{p+1} réel tel que :

$$f - \sum_{k=1}^{p} \alpha_i g_i = \alpha_{p+1} g_{p+1}.$$

Cela permet de conclure que $\mathcal{P}(p+1)$ est vraie.

c) Soient g_1, \ldots, g_p des formes linéaires indépendantes sur E. Comme $\mathcal{L}(E, \mathbb{R})$ est de dimension n, on peut compléter la famille libre (g_1, \ldots, g_p) en une base $\beta = (g_1, \ldots, g_n)$ de $\mathcal{L}(E, \mathbb{R})$. On a alors la suite d'inclusions :

$$\underbrace{\bigcap_{i=1}^{n} \ker g_{i}}_{=F_{0}} \subset \underbrace{\bigcap_{i=1}^{n-1} \ker g_{i}}_{F_{1}} \subset \cdots \subset \underbrace{\ker g_{1}}_{=F_{n-1}} \subset E.$$

Supposons un instant qu'il existe $k \in \{0, ..., n-2\}$ tel que

$$\bigcap_{i=1}^{n-k} \ker g_i = \bigcap_{i=1}^{n-(k+1)} \ker g_i.$$

On a alors $\bigcap_{i=1}^{n-(k+1)} \ker g_i \subset \ker g_{n-k}$, et selon la question 2b, $g_{n-k} \in \operatorname{vect}(g_1, \dots, g_{n-(k+1)})$, ce qui est absurde, par liberté des éléments de β .

De plus g_n n'est pas la forme nulle, donc les inclusions :

$$F_0 \subset F_1 \subset \cdots \subset F_{n-1} \subset E$$

sont strictes. De là :

$$\dim F_0 < \dim F_1 < \dots < \dim F_{n-1} < n.$$

Cela force dim $F_k = k$ pour tout $k \in \{0, \dots, n-1\}$ et on peut donc conclure.