Un problème d'algèbre linéaire, niveau +

Dans tout le problème, \mathcal{E} est un espace vectoriel réel de dimension finie $n \geq 2$.

Pour tout entier $i \ge 0$, et tout endomorphisme A de \mathcal{E} , A^i est l'endomorphisme définie par récurrence par $A^{i+1} = A^i \circ A$ et $A^0 = I$ où I est l'identité de \mathcal{E} ; pour tout polynôme $P = \sum_{i=0}^d a_i X^i$

d'une variable, à coefficients réels, P(A) désigne l'endomorphisme $\sum_{i=1}^{d} \alpha_i A_i$.

L'image et le noyau de A sont notés Im A et ker A. Un endomorphisme A est dit nilpotent lorsqu'il existe q > 0 entier tel que $A^q = 0$; le plus petit de ces entiers q s'appelle l'indice de nilpotence de A.

Dans toute cette partie L est un endomorphisme nilpotent de $\mathcal E$ et on note p son indice de nilpotence.

- 1. a. Soit $i \ge 0$ un entier. Démontrer que $\ker L^i \subset \ker L^{i+1}$ et $\operatorname{Im} L^{i+1} \subset \operatorname{Im} L^i$ puis que l'égalité $\ker L^i = \ker L^{i+1}$ équivaut à l'égalité $\operatorname{Im} L^i = \operatorname{Im} L^{i+1}$ et qu'elle entraı̂ne l'égalité $\operatorname{Im} L^j = \operatorname{Im} L^i$ pour tout entier $j \ge i$.
 - b. Démontrer que si ker L^i est différent de \mathcal{E} alors il est aussi différent de ker L^{i+1} .
 - c. Démontrer que la dimension du noyau de L^i croît strictement avec l'exposant i sur l'ensemble des entiers compris (au sens large) entre 0 et p. En déduire que $L^n=0$ et que, si p=n, on a dim $\ker L^i=i$ pour tout i dans $\{0,\ldots,n\}$.
- 2. Dans cette question on suppose qu'il existe h dans $\{1, \ldots, n-1\}$ tel que L^h soit de rang n-h.
 - a. Etablir que pour tout j dans $\{1,\ldots,h\}$, le rang de L^j est n-j.
 - b. Pour tout entier $i \ge 0$, en considérant l'application Λ : Im $L^i \to \text{Im } L^{i+1}$ définie par $\Lambda(x) = L(x)$ pour x dans $\text{Im } L^i$, établir une relation entre les dimensions des sous-espaces $\text{Im } L^i$, $\text{Im } L^{i+1}$ et $\text{Im } L^i \cap \ker L$.
 - c. Quel est l'indice de nilpotence de L?
- 3. Dans cette question on suppose que le rang de L est égal à n-1.
 - a. Soit \mathcal{F} un sous-espace de \mathcal{E} stable par L et de dimension $r \geqslant 1$; on note M l'endomorphisme induit par L sur \mathcal{F} . Démontrer que pour tout j dans $\{1,\ldots,r\}$ on a $\ker M^j = \ker L^j \cap \mathcal{F}$. Quel est le noyau de L^r ?
 - b. Caractériser les sous-espaces de \mathcal{E} stables par L à l'aide des noyaux des endomorphismes L^i .

- 4. Dans cette question on suppose que l'indice de nilpotence p de L est strictement compris entre 1 et n. On note e un élément de \mathcal{E} tel que $L^{p-1}(e) \neq 0$.
 - a. Justifier de l'existence d'un tel vecteur e et démontrer que la famille $(e, L(e), \dots, L^{p-1}(e))$ est libre.

On notera dans la suite \mathcal{G} le sous-espace vectoriel $\operatorname{vect}(e, L(e), \dots, L^{p-1}(e))$.

- b. Pour tout u dans le dual $\mathcal{E}^* = \mathcal{L}(\mathcal{E}, \mathbb{R})$, on note ${}^tL(u) = u \circ L$. Démontrer que tL est un endomorphisme de \mathcal{E}^* puis que pour tout i dans \mathbb{N} on a : ${}^t(L^i) = ({}^tL)^i$.
- c. Soit ε un élément de \mathcal{E}^* tel que $({}^tL)^{p-1}(\varepsilon)(e) \neq 0$. On pose :

$$\mathcal{H}^* = \text{vect}(\varepsilon, {}^tL(\varepsilon), \dots, ({}^tL)^{p-1}(\varepsilon))$$

Quelle est la dimension de \mathcal{H}^* ?

- d. On note $\mathcal{H} = \{x \in \mathcal{E} \mid (\forall u \in \mathcal{H}^*)(u(x) = 0)\}.$
 - i. Quelle est la dimension de \mathcal{H} ?
 - ii. Démontrer que \mathcal{H} est un sous-espace L-stable de \mathcal{E} .
 - iii. Démontrer que $\mathcal{E} = \mathcal{G} \oplus \mathcal{H}$.
- e. i. Démontrer que $\mathcal G$ est L-stable puis que l'endomorphisme induit $L_{\mathcal G}$ est nilpotent d'indice p.
 - ii. Démontrer alors que \mathcal{E} est somme directe de s sous-espaces vectoriels \mathcal{E}_{ℓ} ($\ell = 1, \ldots, s$) dont chacun est stable par L et a pour dimension l'indice de nilpotence de l'endomorphisme induit par L sur ce même sous-espace.

Partie II

Dans toute la suite du problème, pour tout couple (A, B) d'endomorphisme de \mathcal{E} on note [A, B] l'endomorphisme $A \circ B - B \circ A$.

Dans cette partie A et B sont des endomorphismes de \mathcal{E} , non nuls, et α est un réel non nul tel que :

$$[A, B] = \alpha B$$

5. a. Pour tout triplet (U,V,W) d'endomorphismes de $\mathcal{E},$ vérifier l'égalité :

$$[U,V\circ W]=[U,V]\circ W+V\circ [U,W].$$

b. Soient P dans ${\rm I\!R}[X]$ et P' son polynôme dérivé. Démontrer que pour tout $q\geqslant 1$ dans ${\rm I\!N}$ on a :

$$[A, B^q] = q\alpha B^q$$

En déduire que $[A, P(B)] = \alpha B \circ P'(B)$ puis que, pour tout entier $k \ge 0$, le sous-espace $\ker B^k$ est stable par A.

c. Établir l'existence d'un polynôme P non nul tel que P(B)=0.

Démontrer que B est nilpotent (on pourra utiliser l'endomorphisme $dP_0(B) - B \circ P'_0(B)$ où P_0 est un polynôme non nul de degré minimal d tel que $P_0(B) = 0$).

6. Dans cette question on suppose que le rang de B est n-1.

- a. i. Quel est le rang de B^{n-1} ?
 - ii. Comment peut-on choisir x dans \mathcal{E} de façon qu'en posant $x_k = B^{n-k}(x)$ pour tout k dans $\{1, \ldots, n\}$, la famille (x_1, \ldots, x_j) soit une base de $\ker B^j$ pour tout j dans $\{1, \ldots, n\}$?
- b. i. Démontrer que x_1 est un vecteur propre de A dont on notera λ la valeur propre associée.
 - ii. Quelle est la forme de la matrice de A dans la base (x_1, \ldots, x_n) ?
 - iii. Quels sont les éléments successifs de la diagonale principale de cette matrice? En déduire que $\lambda (n-1)\alpha$ est une valeur propre de A.
- c. Démontrer que si x est un vecteur propre de A, associé à la valeur propre μ , B(x) est un vecteur nul ou un vecteur propre de A dont on précisera la valeur propre associée.
- d. Soit e_n un vecteur propre de A associé à la valeur propre $\lambda (n-1)\alpha$; pour tout entier k dans $\{1,\ldots,n\}$ on pose $e_k = B^{n-k}(e_n)$. Démontrer que (e_1,\ldots,e_n) est une base de \mathcal{E} dans laquelle A se diagonalise et rappeler les expressions des matrices de A et B dans cette base.

Partie III

Dans cette partie A, B et C sont trois endomorphismes non nuls de \mathcal{E} et α et β deux réels non nuls tels que :

$$[A, B] = \alpha B, \ [A, C] = \beta C, \ [B, C] = A.$$

- 7. Calculer la valeur de $(\alpha + \beta)[B, C]$ et en déduire que α et β sont nécessairement opposés.
- 8. Dans cette question on suppose que le rang de B est n-1.
 - a. Trouver numériquement la somme des valeurs propres de A et en déduire ces valeurs propres.
 - b. Quel est, en fonction de n, le rang de A?
 - c. Calculer explicitement la matrice C relative à la base \mathcal{B} de \mathcal{E} définie à la question 6d et vérifier que les endomorphismes A, B et C ainsi déterminés par leur matrices dans \mathcal{B} satisfont aux conditions imposées au début de cette partie III.
 - d. Quel est le rang de C?
 - e. Démontrer que $\{0\}$ et \mathcal{E} sont les seuls sous-espaces vectoriels de \mathcal{E} stables à la fois par A, B et C.
- 9. Dans cette question on suppose que $\alpha=2$ et que $\{0\}$ et \mathcal{E} sont les seuls sous-espaces vectoriels de \mathcal{E} stables à la fois par A, B et C; aucune hypothèse n'est faite sur le rang de B.
 - a. Pour tout entier $i \ge 1$ établir l'égalité :

$$[B,C^{i}] = iC^{i-1}(A - (i-1)I)$$

et en déduire l'existence d'une valeur propre de A.

b. Montrer que A est diagonalisable et que B est de rang n-1.

FIN DE L'ÉNONCÉ