La représentation adjointe, niveau CCP, une correction

Partie I

1. Quelques généralités.

- a) Il est aisé de montrer que ad_A est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$.
- b) On a $ad_A(I_n) = 0$. Ainsi ker ad_A est non réduit à 0. L'endomorphisme ad_A n'est pas injectif.
 - Notons que si $M \in \mathcal{M}_n(\mathbb{R})$ alors $\operatorname{tr}(\operatorname{ad}_A(M)) = \operatorname{tr}(AM) \operatorname{tr}(MA) = 0_{\mathbb{R}}$. Ainsi Im $\operatorname{ad}_A \subset \ker \operatorname{tr} : ad_A$ n'est pas surjectif.

2. Etude d'un cas particulier

On suppose dans cette question que n=2 et $A=\begin{pmatrix} 1 & 1 \\ 0 & 3 \end{pmatrix}$. On note \mathcal{B} la base de $\mathcal{M}_2(\mathbb{R})$ constituée des quatre matrices suivantes :

$$E_{1,1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_{1,2} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_{2,1} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \text{ et } E_{2,2} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

- a) A dans $\mathcal{M}_2(\mathbb{R})$ admet deux valeurs propre distinctes qui sont 1 et 3 : elle est diagonalisable.
- b) On a $ad_A(E_{1,1}) = AE_{1,1} E_{1,1}A = E_{1,1} (E_{1,1} + E_{1,2}) = -E_{1,2}$ et des calculs similaires amènent :

$$[\mathrm{ad}_A]_{\mathcal{B}} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ -1 & -2 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & -1 & 0 \end{pmatrix}.$$

c) Le rang de la matrice précédente est 2:0 est donc valeur propre de ad_A (on le savait depuis la première question) et l'espace propre associé est de dimension 2, via le théorème du rang. Il reste au plus deux valeurs propres de ad_A .

Or la matrice $[ad_A]_{\mathcal{B}} + 2I_4$ n'est pas inversible (puisque sa seconde colonne est nulle) donc -2 est valeur propre de ad_A .

Enfin la matrice $[ad_A]_{\mathcal{B}} - 2I_4$ n'est pas inversible (puisque sa troisième ligne est nulle) donc 2 est valeur propre de ad_A .

On peut alors affirmer que les valeurs propres de ad_A sont -2, 0 et 2 et que les dimensions respectives des espaces propres associés sont 1, 2 et 1. Il en résulte que ad_A , qui est un endomorphisme de $\mathcal{M}_2(\mathbb{R})$, est diagonalisable puisque la somme des dimensions des sous-espaces propres est égale à la dimension de $\mathcal{M}_2(\mathbb{R})$.

Partie II : Etude du cas où A est diagonalisable.

3. • Comme A est diagonalisable, il existe D diagonale et P inversible dans $\mathcal{M}_n(\mathbb{R})$ telles que : $A = PDP^{-1}$. Il vient alors :

$${}^{t}A = {}^{t}(PDP^{-1}) = {}^{t}(P^{-1}){}^{t}D^{t}P = Q^{-1}DQ$$

où $Q = {}^{t}P$ est inversible. Il en résulte que ${}^{t}A$ est diagonalisable dans $\mathcal{M}_{n}(\mathbb{R})$.

ullet Pour λ réel on a :

$$A - \lambda I_n$$
 inversible $\Leftrightarrow {}^t(A - \lambda I_n)$ inversible $\Leftrightarrow {}^tA - \lambda I_n$ inversible

Ainsi $A - \lambda I_n$ est non inversible si et seulement si ${}^tA - \lambda I_n$ est non inversible : A et tA ont les mêmes valeurs propres.

4. Il existe λ et μ réels tels que $AX = \lambda X$ et $^tAY = \mu Y$, donc $^tYA = \mu^tY$. On a alors :

$$\operatorname{ad}_A(X^tY) = \underbrace{AX}_{=\lambda X}{}^tY - X\underbrace{{}^tYA}_{=\mu^tY} = (\lambda - \mu)X^tY.$$

Enfin, en notant $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ et $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$, on a $X^tY = [x_iy_j]$; de là, puisque X et Y sont non nuls, l'un des coefficients de la matrice X^tY est non nul.

Conclusion. X^tY est un vecteur propre de ad_A

5. • Soit $(i,j) \in [1,n]^2$. On écrit $V_i = \sum_{k=1}^n \alpha_k X_k$ et $V_j = \sum_{\ell=1}^n \beta_\ell Y_\ell$ où . . .

On a alors:

$$V_i^t V_j = \left(\sum_{k=1}^n \alpha_k X_k\right)^t \left(\sum_{\ell=1}^n \beta_\ell Y_\ell\right) = \left(\sum_{k=1}^n \alpha_k X_k\right) \left(\sum_{\ell=1}^n \beta_\ell^t Y_\ell\right)$$
$$= \sum_{k=1}^n \sum_{\ell=1}^n \alpha_k \beta_\ell X_k^t Y_\ell \in \text{vect}(\mathcal{F})$$

- On sait que, pour $(i, j) \in [1, n]^2$, $E_{i,j} = V_i^t V_j \in \text{vect}(\mathcal{F})$. Ainsi $\text{vect}(\mathcal{F})$ contient une base de $\mathcal{M}_n(\mathbb{R})$: \mathcal{F} est une partie génératrice de $\mathcal{M}_n(\mathbb{R})$ de cardinal $n^2 = \dim \mathcal{M}_n(\mathbb{R})$: c'est une base de $\mathcal{M}_n(\mathbb{R})$.
- 6. Comme A est supposée diagonalisable, tA l'est aussi d'après la question 3. Il existe ainsi (X_1, \ldots, X_n) et (Y_1, \ldots, Y_n) bases de $\mathcal{M}_{n,1}(\mathbb{R})$ formées de vecteurs propres de A et tA respectivement.

D'après la question précédente et la question 4, la famille $(X_i Y_j)_{(i,j) \in [\![1,n]\!]}$ est une base de $\mathcal{M}_n(\mathbb{R})$ qui est formée de vecteurs propres de ad_A , ce qui signifie exactement que ad_A est diagonalisable.

Partie III

- 7. Etude d'un sous-espace propre de ad_A associé à une valeur propre non nulle.
 - a) Pour k=0 et k=1, c'est évident. Supposons que ${\rm ad}_A(T^k)=k\mu T^k$ pour un certain $k\in\mathbb{N}.$ On a alors :

$$AT^{k+1} = (AT^k)T = (\operatorname{ad}_A(T^k) + T^k A)T$$

$$= (k\mu T^k - T^k A)T = k\mu T^{k+1} - T^k AT = k\mu T^{k+1} - T^k \underbrace{(-\operatorname{ad}_A(T) - TA)}_{=-\mu T - TA}$$

$$= (k+1)\mu T^{k+1} + T^{k+1} A$$

Ainsi $ad_A(T^{k+1}) = (k+1)\mu T^{k+1}$.

Par récurrence, on peut donc affirmer que, pour tout $k \in$

 \mathbb{N} on a : $\operatorname{ad}_A(T^k) = k\mu T^k$.

b) On raisonne par l'absurde et on suppose que pour tout $q \ge 1$ on a $T^q \ne 0$. D'après la question précédente, $q\mu$ est alors une valeur propre de ad_A , et ce pour tout $q \ge 1$ entier. Ainsi ad_A , qui est un endomorphisme d'un espace vectoriel de dimension finie, admet une infinité de valeurs propres (puisque μ est non nul) : c'est profondément stupide!

Conclusion. Il existe un entier $q \geqslant 1$ tel que $T^q = 0$

c) • Comme $T^{p-1} \neq 0$, il existe $X \in \mathcal{M}_{n,1}(\mathbb{R})$ tel que $T^{p-1}X \neq 0$. Montrons alors que la famille $(X, TX, \dots, T^{p-1}X)$ est libre dans $\mathcal{M}_{n,1}(\mathbb{R})$. Soient $\alpha_0, \dots, \alpha_{p-1}$ des réels tels que :

$$\alpha_0 X + \alpha_1 T X + \dots + \alpha_{p-1} T^{p-1} X = 0 \quad (\spadesuit)$$

En multipliant à gauche par T^{p-1} on obtient : $\alpha_0 \underbrace{T^{p-1} X}_{\neq 0} = 0$, donc $\alpha_0 = 0$.

On multiple alors à gauche dans (\spadesuit) par T^{p-2} pour obtenir $\alpha_1 T^{p-1} X = 0$ d'où $\alpha_1 = 0$. En itérant ce raisonnement, il vient $\alpha_0 = \ldots = \alpha_{p-1} = 0$: la famille $(X, TX, \ldots, T^{p-1}X)$ est libre.

- Comme dim $\mathcal{M}_{n,1}(\mathbb{R}) = n$, on obtient $p \leq n$.
- 8. a. Comme ad_A est un endomorphisme diagonalisable de E on a : $E = \bigoplus_{i=1}^p E_i$.

Ainsi tout élément V de $E = \mathcal{M}_n(\mathbb{R})$ s'écrit (de manière unique) $V = \sum_{i=1}^p W_i$ où $W_i \in E_i$ pour tout $i \in \{1, \dots, p\}$.

b. Soit $W_i \in E_i$. On a alors $\mathrm{ad}_A(W_i) = \mu_i W_i$ mais aussi : $\mathrm{ad}_A(W_i) = AW_i - W_i A$ donc :

$$ad_A(W_i)X = AW_iX - W_iAX$$
 i.e. $\mu_iW_iX = AW_iX - \lambda W_iX$

donc
$$AW_iX = (\lambda + \mu_i)W_iX$$

c. Par exemple écrivons $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$. Comme X est un vecteur propre colonne de A, une de ses coordonnées est non nul : il existe $i_0 \in \{1, \dots, n\}$ tel que $x_{i_0} \neq 0$. Pour $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{R})$ on cherche $V = [v_{i,j}]$ dans E telle que Y = VX. Cette dernière égalité est équivalente au système (d'inconnues $v_{i,j}$) :

$$\begin{cases} \sum_{j=1}^{n} v_{1,j} x_j &= y_1 \\ \vdots & \vdots \\ \sum_{j=1}^{n} v_{n,j} x_j &= y_n \end{cases}$$

Fixons i dans $\{1,\ldots,n\}$. On pose alors $v_{i,j}=\delta_j^{i_0}\frac{y_i}{x_{i_0}}$ pour tout j dans $\{1,\ldots,n\}$ de sorte que si $V=[v_{i,j}]$ on obtient VX=Y i.e. $\Phi(V)=Y$.

Conclusion. Φ est surjective

d. Prenons Y dans $M_{n,1}(\mathbb{R})$. Selon la question précédente, il existe V dans E tel que Y = VX.

On écrit alors $V = \sum_{i=1}^{p} W_i$ selon $E = \bigoplus_{i=1}^{p} E_i$. Il vient :

$$Y = \sum_{i=1}^{p} W_i X$$

Or chaque W_iX est dans l'espace $\ker(A - (\lambda + \mu_i)I)$ (d'après 6b). Ainsi $M_{n,1}(\mathbb{R})$ est somme des sous-espaces $\ker(A - (\lambda + \mu_i)I)$ qui, lorsqu'ils sont non triviaux, sont des sous-espaces propres de A: E est somme directe des sous-espaces propres de A donc A est diagonalisable.

Partie IV : Étude du cas où A est symétrique.

10. Le lecteur montrera facilement que l'application (. | .) est un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$.

Commentaire important. Remarquez que, même si on n'en a pas besoin ici, $(M \mid N) = \operatorname{tr}({}^t N M) \dots$

11. Soient $(M, N) \in \mathcal{M}_n(\mathbb{R})^2$, avec $M = [m_{i,j}]_{(i,j) \in [\![1,n]\!]^2}$ et $N = [n_{i,j}]_{(i,j) \in [\![1,n]\!]^2}$. Écrivons $M^t N = [q_{i,j}]$. Pour tout $(i,j) \in [\![1,n]\!]^2$ on a :

$$c_{i,j} = \sum_{k=1}^{n} m_{i,k} n_{j,k}.$$

Ainsi, il vient:

$$(M^{t}N \mid I_{n}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\sum_{k=1}^{n} m_{i,k} n_{j,k}\right) \delta_{i}^{j}$$
$$= \sum_{i=1}^{n} \sum_{k=1}^{n} m_{i,k} n_{i,k}$$
$$= (M \mid N)$$

Conclusion. Pour tout $(M, N) \in \mathcal{M}_n(\mathbb{R})^2$, on a $(M \mid N) = (M^t N \mid I_n)$.

- 12. Comme la matrice P est orthogonale, pour tout (i,j) de $[1,n]^2$, on a : ${}^tC_iC_j = \delta_i^j$ (les colonnes d'une matrice orthogonale forment une base orthonormale de $\mathcal{M}_{n,1}(\mathbb{R})$ pour le produit scalaire canonique).
- 13. Soit $(i, j) \in [1, n]^2$.
 - Écrivons $C_i = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ et $C_j = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$. Les coefficient de la matrice $C_i{}^t\!C_j$ sont alors $x_k y_\ell$ pour $(k\ell) \in [\![1,n]\!]^2$. Les coefficients diagonaux de la matrice $C_i{}^t\!C_j$ sont alors :

$$x_1y_1,\ldots,x_ny_n.$$

• On a alors

$$(C_i{}^tC_j \mid I_n) = \sum_{k=1}^n \sum_{\ell=1}^n x_k y_\ell \delta_k^\ell = \sum_{k=1}^n x_k y_k = {}^tC_iC_j = \delta_i^j$$

14. Soient (i,j) et (k,ℓ) dans $[1,n]^2$. On a alors, d'après les questions 11, 12 et 13 :

$$(C_i{}^tC_j \mid C_k{}^tC_\ell) = (C_i{}^tC_j{}^t(C_k{}^tC_\ell) \mid I_n)$$

$$= (C_i{}^tC_jC_\ell{}^tC_k) \mid I_n)$$

$$= \delta_j^\ell(C_i{}^tC_k \mid I_n) = \delta_j^\ell\delta_i^k$$

$$= \begin{cases} 1 & \text{si } (i,j) = (k,\ell) \\ 0 & \text{sinon} \end{cases}$$

Il en résulte que \mathcal{G} est une famille orthonormée de $\mathcal{M}_n(\mathbb{R})$, donc libre. Comme $\operatorname{card}(\mathcal{G}) = n^2 = \dim \mathcal{M}_n(\mathbb{R})$, \mathcal{G} est une base de $\mathcal{M}_n(\mathbb{R})$.

Conclusion. \mathcal{G} est une base orthonormale de $\mathcal{M}_n(\mathbb{R})$, constituée de vecteurs propres de ad_A selon la question 4 (puisque chaque C_i est un vecteur propre de A).

FIN DE LA CORRECTION