L'entropie en probabilité, approche élémentaire

Notations.

• Dans tout le problème, n désigne un entier naturel non nul et I_n désigne l'ensemble des entiers compris entre 1 et n:

$$I_n = \{k \in \mathbb{N} \mid 1 \leqslant k \leqslant n\}.$$

• L'espérance d'une variable aléatoire X sera notée $\mathbb{E}(X)$.

Préliminaire.

1. Soit $h: \mathbb{R}^+ \to \mathbb{R}$ définie par $h(x) = \begin{cases} x \ln x & \text{si } x > 0 \\ 0 & \text{sinon} \end{cases}$.

Démontrer que h est continue sur \mathbb{R}^+ .

h est-elle dérivable en 0?

Déterminer les antécédents de 0 par h.

2. Une propriété fondamentale. Démontrer que pour tout x > 0 on a $\ln x \leqslant x - 1$, avec égalité si, et seulement si, x = 1.

Dans tout le problème, si X est une variable aléatoire discrète sur un espace probabilisé (Ω, \mathcal{A}, P) , l'entropie de X est, sous réserve d'existence :

$$H(X) = -\sum_{x \in X(\Omega)} h(P(X = x))$$

En particulier, lorsque X est à valeurs dans l'ensemble fini $\{x_1, \ldots, x_n\} \subset \mathbb{R}$, l'entropie de X existe toujours et vaut :

$$H(X) = -\sum_{i=1}^{n} h(p_i)$$

où, pour tout i dans $\{1,\ldots,n\}$, $p_i=P(X=x_i)$.

Partie I. Exemples.

- 3. Dans cette question U_n suit la loi uniforme sur I_n . Déterminer $H(U_n)$.
- 4. Soit X une variables aléatoire à valeurs dans une partie finie de \mathbb{R} . Démontrer que H(X) = 0 si, et seulement si, X est presque sûrement constante.
- 5. Pour x dans [0,1] on pose g(x) = -h(x) h(1-x). Etudier g.

Soit X une variable aléatoire qui suit une loi de Bernoulli de paramètre $p \in]0,1[$. Démontrer que $H(X) \leq \ln 2$ avec égalité si et seulement si $p = \frac{1}{2}$.

6. Soit X_1 et X_2 deux variables de Bernoulli indépendantes de paramètres respectifs p_1 et p_2 , définies sur le même espace probabilisé.

Soit Z la variable de Bernoulli telle que $P(Z=1) = P(\langle X_1 + X_2 \text{ est impair } \rangle)$.

En notant p = P(Z = 1), déterminer p et vérifier que $(1 - 2p) = (1 - 2p_1)(1 - 2p_2)$. Préciser $\mathbb{E}(Z)$. 7. Soient $p \in]0,1[$ et X une variable aléatoire suivant une loi binomiale de paramètres n et p.

Soit Z_n la variable de Bernoulli telle que $P(Z_n = 1) = P(\ll X \text{ est impair })$.

Montrer que $1 - 2P(Z_n = 1) = (1 - 2p)^n$ (on pourra raisonner par récurrence). Montrer que $H(Z_n) \leq \ln 2$. Dans quel(s) cas a-t-on égalité?

Partie II. Propriétés de l'entropie des variables à valeurs dans IN

Dans cette partie X_0 est une variable aléatoires sur (Ω, \mathcal{A}, P) qui suit une loi géométrique sur \mathbb{N}^* de paramètre $p \in]0,1[$. On pose $m = \mathbb{E}(X_0)$ et, pour tout $k \in \mathbb{N}^*$, $p_k = P(X_0 = k)$. Soit X une variable aléatoire telle que $X(\Omega) = \mathbb{N}^*$, E(X) = m et H(X) existe. Pour $k \in \mathbb{N}^*$, on pose $q_k = P(X = k)$ et on supposera $q_k > 0$.

- 8. Rappeler la valeur de m, démontrer que X_0 admet une entropie et préciser la valeur de $H(X_0)$.
- 9. Démontrer que la série $\sum_{k\geqslant 1}q_k\ln p_k$ converge et montrer que $H(X)=-\sum_{k=1}^{+\infty}q_k\ln p_k$.
- 10. Vérifier, en utilisant la question 2 du préliminaire, que pour tout $k \in \mathbb{N}^*$, on a :

$$-h(q_k) + q_k \ln p_k \leqslant p_k - q_k$$
.

En déduire que $H(X) \leq H(X_0)$.

11. On suppose que $H(X) = H(X_0)$. Démontrer que, pour tout k dans \mathbb{N}^* , on a :

$$-h(q_k) + q_k \ln p_k = p_k - q_k.$$

En déduire que X suit la même loi que X_0 .

Partie III. Entropie d'un couple.

Dans cette partie, m et n sont des entiers naturels plus grand que 2, (X,Y) et (X',Y') sont deux couples de variables aléatoires discrètes définis sur le même espace probabilisé (Ω, \mathcal{A}, P) . Les variables aléatoires X et X' sont à valeurs dans I_n . Les variables aléatoires Y et Y' sont à valeurs dans I_m .

Pour tout $(i, j) \in I_n \times I_m$, on pose :

$$p_i = P(X = i), \ q_j = P(Y = j), \ \lambda_{i,j} = P(X = i, Y = j) \text{ et } \mu_{i,j} = P(X' = i, Y' = j).$$

On suppose que pour tout $(i,j) \in I_n \times I_m$ on a $\lambda_{i,j} \neq 0$ et $\mu_{i,j} \neq 0$.

Deux définitions.

On définit l'entropie du couple
$$(X,Y)$$
 par $: H(X,Y) = -\sum_{i=1}^{n} \sum_{j=1}^{m} h(\lambda_{i,j}).$

On définit l'information entre les couples (X,Y) et (X',Y') par :

$$K(X, Y, X', Y') = -\sum_{i=1}^{n} \sum_{i=1}^{m} \lambda_{i,j} \ln \frac{\mu_{i,j}}{\lambda_{i,j}}.$$

12. Propriétés de l'information entre deux couples

- a. Rappeler les valeurs de $\sum_{i=1}^{n} \sum_{j=1}^{m} \lambda_{i,j}$ et $\sum_{i=1}^{n} \sum_{j=1}^{m} \mu_{i,j}$.
- b. Démontrer que $K(X,Y,X',Y')=-\sum_{i=1}^n\sum_{j=1}^m\lambda_{i,j}\left(\ln\frac{\mu_{i,j}}{\lambda_{i,j}}-\frac{\mu_{i,j}}{\lambda_{i,j}}+1\right)$.
- c. Démontrer que $K(X, Y, X', Y') \ge 0$.
- d. Démontrer que K(X,Y,X',Y')=0 si et seulement si les couples (X,Y) et (X',Y') ont même loi conjointe.
- e. On suppose ici que les variables aléatoires X' et Y' sont indépendantes et de même loi que X et Y respectivement.
 - i. Démontrer que K(X, Y, X', Y') = H(X) + H(Y) H(X, Y).
 - ii. En déduire que : $H(X,Y) \leq H(X) + H(Y)$ (4). Donner une CNS pour que cette inégalité soit une égalité.

On admettra, dans la suite, que l'inégalité (\clubsuit) reste vraie même si certains des $\lambda_{i,j}$ ou des $\mu_{i,j}$ s'annulent.

13. Entropie conditionnelle

On définit l'entropie conditionnelle de Y sachant X par : $H(Y \mid X) = H(X,Y) - H(X)$. Elle mesure l'incertitude restant sur la valeur de Y sachant la valeur de X.

- a. Démontrer que $H(Y \mid X) \leq H(Y)$.
- b. On considère m réels a_1, \ldots, a_n dans]0,1]. Démontrer que pour tout i dans I_m on a :

$$\sum_{i=1}^{m} h(a_i) \leqslant h\left(\sum_{i=1}^{m} a_i\right) \quad (\spadesuit)$$

- (\spadesuit) est-elle encore vraie lorsque a_1, \ldots, a_n sont dans [0,1]? Démontrer qu'il y a égalité dans (\spadesuit) si et seulement s'il existe au plus un indice i dans I_m tel que $a_i \neq 0$.
- c. Démontrer que pour tout i dans I_n , $\sum_{j=1}^m h(\lambda_{i,j}) \leqslant h(p_i)$. En déduire que $H(Y \mid X) \geqslant 0$.
- d. Dans cette question, on suppose que $H(Y \mid X) = 0$. Démontrer que, pour tout $i \in I_n$ tel que $p_i > 0$, il existe un unique j dans I_m tel que $\lambda_{i,j} > 0$. On posera $j = \alpha(i)$. Démontrer que $Y = \alpha(X)$ presque sûrement. Comment interpréter ce résultat?

Fin de l'énoncé