Problème. Autour du théorème d'Abel pour les séries entières

Dans tout le problème, $(a_n)_{n\in\mathbb{N}}$ est une suite de nombres réels telle que la série entière $\sum a_n x^n$ de la variable réelle \boldsymbol{x} ait pour rayon de convergence 1.

On désigne alors par $\sum a_n$ la série de terme général a_n et par f la fonction définie sur l'intervalle]-1,1[par :

$$f(x) = \sum_{n=0}^{+\infty} a_n x^n.$$

Pour tout $n \in \mathbb{N}$, on note encore f_n la fonction définie sur \mathbb{R} par $f_n(x) = a_n x^n$. On désigne par (\mathcal{P}_1) et (\mathcal{P}_2) les deux propriétés suivantes possibles de la suite (a_n) :

 (\mathcal{P}_1) : « la série $\sum a_n$ converge. » (\mathcal{P}_2) : « la fonction f admet une limite finie, notée $\lim_{x\to 1^-} f(x)$, lorsque x tend vers 1par valeurs inférieures. »

Partie I - Généralités

- 1. En utilisant des développements « usuels » en série entière, donner dans chaque cas, un exemple de suite (a_n) telle que :
 - a) (a_n) ne vérifie pas (\mathcal{P}_1) et vérifie (\mathcal{P}_2) ;
 - b) (a_n) ne vérifie ni (\mathcal{P}_1) ni (\mathcal{P}_2) ;
 - c) La série de fonctions $\sum f_n$ ne converge pas uniformément sur l'intervalle] -1,1[.
- 2. On suppose que la série $\sum a_n$ est absolument convergente. Démontrer alors que la fonction f admet une limite finie lorsque x tend vers 1 par valeurs inférieures et que $\lim_{x\to 1^-} f(x) = \sum_{n=0}^{+\infty} a_n$.

3. Exemple

Soit $g: x \mapsto x \ln(1+x) + \ln(1+x) - x$.

- a) Développer en série entière au voisinage de 0 la fonction q.
- b) Déduire de la question 2, la somme de la série $\sum_{n>2} \frac{(-1)^n}{n(n-1)}$.

Partie II - Théorème d'Abel et applications

4. Théorème d'Abel

On suppose dans cette question que la série $\sum a_n$ converge. On va démontrer qu'alors la fonction f admet une limite finie lorsque x tend vers 1 par valeurs inférieures.

On pose, pour tout n entier naturel et pour tout $x \in [0,1]$: $r_n = \sum_{k=n+1}^{+\infty} a_k$ et $R_n(x) =$

$$\sum_{k=n+1}^{+\infty} a_k x^k.$$

- a) Soit $x \in [0, 1]$. Simplifier $\sum_{p=1}^{+\infty} (r_{n+p-1} r_{n+p}) x^{n+p}$.
- b) Soit $x \in [0, 1[$. Démontrer que : $R_n(x) = r_n x^{n+1} + x^{n+1}(x-1) \sum_{p=1}^{+\infty} r_{n+p} x^{p-1}$.
- c) Soit un réel $\varepsilon > 0$, justifier qu'il existe un entier n_0 tel que pour tout entier $n \ge n_0$ et tout entier naturel p on ait $|r_{n+p}| \le \frac{\varepsilon}{2}$, puis que, pour tout entier $n \ge n_0$ et pour tout réel $x \in [0,1], |R_n(x)| \le \varepsilon$.
- d) Conclure que la fonction f admet une limite lorsque x tend vers 1 par valeurs inférieures et que $\lim_{x\to 1^-} f(x) = \sum_{n=0}^{+\infty} a_n$.
- 5. Que peut-on dire de la série $\sum a_n$ si $\lim_{x\to 1^-} f(x) = +\infty$?

6. Exemple

Utiliser le théorème d'Abel et un développement en série entière usuel pour déterminer la somme de la série $\sum_{n\geqslant 0} \frac{(-1)^n}{n+1}$.

7. Exemple

- a) Retrouver le développement en série entière en 0 de la fonction $x \mapsto \arctan(x)$.
- b) Utiliser le théorème d'Abel pour écrire $\frac{\pi}{4}$ comme somme d'une série numérique.
- 8. **Application** Soit $\sum u_n$ et $\sum v_n$ deux séries de nombres réels. On pose, pour n entier naturel, $w_n = \sum_{k=0}^n u_k v_{n-k}$.
 - a) Dans cette question, on a pour tout $n \in \mathbb{N}$: $u_n = v_n = \frac{(-1)^n}{(n+1)^{1/4}}$.
 - i) Justifier que les séries $\sum u_n$ et $\sum v_n$ convergent.
 - ii) Démontrer que pour tout $k \in \{0, \dots, n+1\}$ on a : $(k+1)(n-k+1) \leqslant \frac{(n+2)^2}{4}$.
 - iii) Qu'en déduire pour le produit de Cauchy des séries $\sum u_n$ et $\sum v_n$?
 - b) On suppose dans cette question que les trois séries $\sum u_n$, $\sum v_n$ et $\sum w_n$ convergent. Montrer, à l'aide du théorème d'Abel, que l'on a :

$$\sum_{n=0}^{+\infty} w_n = \sum_{n=0}^{+\infty} u_n \sum_{n=0}^{+\infty} v_n.$$

Partie III - Une réciproque partielle du théorème d'Abel

9. Justifier que la réciproque du théorème d'Abel est fausse.

On cherche à rajouter une condition (Q) à la condition (P_2) de telle sorte que si (a_n) vérifie (P_2) et (Q), alors elle vérifie (P_1) .

- 10. On prend pour (Q) la propriété : « pour tout entier $n, a_n \ge 0$ ».
 - a) Démontrer que : $\sum_{k=0}^{n} a_k \leqslant \lim_{x \to 1^-} f(x)$
 - b) Démontrer que si (a_n) vérifie les propriétés (\mathcal{P}_2) et (\mathcal{Q}) , alors elle vérifie la propriété (\mathcal{P}_1) .

2

Partie IV - Séries harmoniques transformées

Désormais, on admet et on pourra utiliser le théorème de Littlewood :

si la fonction f admet une limite finie lorsque x tend vers 1 par valeurs inférieures et que $a_n = O\left(\frac{1}{n}\right)$, alors la série $\sum a_n$ converge.

Pour p entier naturel non nul, on considère une suite $(\varepsilon_n)_{n\geqslant 1}$ qui est périodique de période p et formée d'éléments de l'ensemble $\{-1,1\}$.

11. Donner, en justifiant leur valeur, les rayons de convergence des séries entières :

$$\sum_{n\geqslant 1} \varepsilon_n x^{n-1} \text{ et } \sum_{n\geqslant 1} \frac{\varepsilon_n}{n} x^n.$$

On pose, pour
$$x \in]-1,1[:f(x)=\sum_{n=1}^{+\infty}\frac{\varepsilon_n}{n}x^n \text{ et } g(x)=\sum_{n=1}^{+\infty}\varepsilon_nx^{n-1}.$$

- 12. Établir que la série $\sum_{n\geqslant 1} \frac{\varepsilon_n}{n}$ converge si et seulement si la fonction $f: x \longmapsto \int_0^x g(t) dt$ admet une limite finie lorsque x tend vers 1 par valeurs inférieures.
- 13. Montrer que g est une fraction rationnelle à déterminer.
- 14. Retrouver, uniquement par les deux questions précédentes, que la série harmonique $\sum_{n\geqslant 1} \frac{1}{n}$ diverge et que la série alternée $\sum_{n\geqslant 1} \frac{(-1)^n}{n}$ converge en précisant sa somme.
- 15. Déterminer une condition nécessaire et suffisante portant sur la somme $\sum_{i=1}^{p} \varepsilon_i$ pour que la série $\sum_{n\geq 1} \frac{\varepsilon_n}{n}$ converge.

3

Que peut-on en conclure dans les cas où la période p est un entier impair?

16. Exemple

Dans le cas où la suite $(\varepsilon_n)_{n\geqslant 1}$ est périodique de période 6 avec :

$$\varepsilon_1 = 1, \varepsilon_2 = 1, \varepsilon_3 = 1, \varepsilon_4 = -1, \varepsilon_5 = -1, \varepsilon_6 = -1, \text{ déterminer } \sum_{n=1}^{+\infty} \frac{\varepsilon_n}{n}.$$