Devoir n° 0, une correction

Partie I - Exercices d'analyse

Exercice 1

1. Soit $x \in]0,1[$. Pour tout $n \ge 15$ entier on a : $\sum_{k=1}^{n} x^k = \frac{x^{15} - x^{n+1}}{1-x} \xrightarrow[n \to +\infty]{} \frac{x^{15} - x^{n+1}}{1-x}$.

Ainsi la série $\sum_{n\geq 15} x^n$ converge de somme : $\sum_{n=15}^{+\infty} x^n = \frac{x^{15}}{1-x}$.

- 2. Soit x réel. Soit $n \in \mathbb{N}$. Posons $S_n = \sum_{k=0}^n e^{ikx}$.
 - Si $x \in 2\pi \mathbb{Z}$, pour tout $k \in \mathbb{N}$ on a $e^{ikx} = 1$ et ainsi : $S_n = n + 1$.
 - Si $x \in \mathbb{R} \setminus 2\pi \mathbb{Z}$ alors $e^{ix} \neq 1$ et la formule des progressions géométriques donne :

$$S_n = \frac{1 - e^{i(n+1)x}}{1 - e^{ix}}.$$

On peut simplifier cette dernière expression de la manière suivante :

$$S_n = \frac{e^{i(n+1)\frac{x}{2}} \left(e^{-i(n+1)\frac{x}{2}} - e^{i(n+1)\frac{x}{2}}\right)}{e^{i\frac{x}{2}} \left(e^{-i\frac{x}{2}} - e^{i\frac{x}{2}}\right)} = e^{in\frac{x}{2}} \times \frac{-2i\sin\frac{(n+1)x}{2}}{-2i\sin\frac{x}{2}}$$
$$= \frac{\sin\frac{(n+1)x}{2}}{\sin\frac{x}{2}} e^{in\frac{x}{2}}$$

Ainsi il vient:

- Si $x \in 2\pi \mathbb{Z}$, $\sum_{k=0}^{n} \cos(kx) = \Re e\left(S_n\right) = n+1$ et $\sum_{k=0}^{n} \sin(kx) = \Im m\left(S_n\right) = 0$. Si $x \in \mathbb{R} \setminus 2\pi \mathbb{Z}$:

$$\begin{cases} \sum_{k=0}^{n} \cos(kx) = \Re e\left(S_n\right) = \frac{\sin\frac{(n+1)x}{2}}{\sin\frac{x}{2}} \cos\frac{nx}{2} \\ \sum_{k=0}^{n} \sin(kx) = \Im m\left(S_n\right) = \frac{\sin\frac{(n+1)x}{2}}{\sin\frac{x}{2}} \sin\frac{nx}{2} \end{cases}$$

Exercice 2

Soit k > 0.

1. Soit $n \in \mathbb{N}^*$. On considère la fonction :

$$f_n = \left(\begin{array}{ccc}]0, +\infty[& \longrightarrow & \text{IR} \\ x & \longmapsto & x^{k+1} + x^k - n \end{array}\right)$$

Cette fonction est polynomiale donc de classe C^{∞} (et en particulier **continue**), et on a :

$$\begin{cases} \lim_{x \to 0} f_n(x) = -n \\ \lim_{x \to +\infty} f_n(x) = +\infty \end{cases}$$

Ainsi, d'après le **théorème des valeurs intermédiaires**, l'équation $f_n(x) = 0$ admet au moins une solution sur $]0, +\infty[$ Comme f est strictement croissante sur $]0, +\infty[$ (car $f'_n > 0$), cette solution est unique.

Remarque. Comme f_n est strictement croissante, elle induit une bijection de $]0, +\infty[$ sur $f(]0, +\infty[) =] -n, +\infty[$, cette dernière égalité résultant de la continuité de f : cela permet aussi de conclure.

Notons aussi que la bijection réciproque f_n^{-1} est de même monotonie, c'est à dire strictement croissante.

2. • Soit $n \in \mathbb{N}^*$. On a $f_n(x_n) = 0$ ainsi : $f_{n+1}(x_n) = f_n(x_n) - 1 = -1$. Il en résulte que $f_{n+1}(x_n) < 0 = f_{n+1}(x_{n+1})$. Par stricte croissance de f_{n+1}^{-1} , il vient :

$$x_n < x_{n+1}$$
.

Ceci étant valable pour tout $n \in \mathbb{N}^*$, la suite (x_n) est strictement croissante.

• Supposons un instant que la suite (x_n) converge vers un réel ℓ (qui est positif). On a alors :

$$0 = f_n(x_n) \sim \ell^{k+1} + \ell^k - n \xrightarrow[+\infty]{} -\infty$$

ce qui est profondément stupide. La suite (x_n) ne converge pas. Cette suite n'est donc pas majorée, et comme elle est croissante on peut dire que : $x_n \xrightarrow[]{} +\infty$.

3. Comme
$$x_n \xrightarrow[+\infty]{} +\infty$$
, on a $x_n^{k+1} \sim x_n^{k=1} - x_n^k$. Ainsi il vient : $\frac{x_n^{k+1}}{n} \sim \frac{x_n^{k=1} - x_n^k}{n} = 1$. Il en résulte que $\frac{x_n^{k+1}}{n} \xrightarrow[+\infty]{} 1$, d'où $x_n^{k+1} \sim n$ et $x_n \sim \sqrt[k+1]{n}$.

Exercice 3

Soit g la fonction définie sur [0,1] par g(x)=f(x)-x. Raisonnons par l'absurde et supposons que g ne s'annule pas sur]0,1[. Comme elle est continue, par le théorème des valeurs intermédiaires, on a g>0 ou g<0 sur]0,1[. Dans le premier cas, il vient donc :

$$0 < \int_0^1 g = \int_0^1 f - \frac{1}{2},$$

ce qui est absurde. L'autre cas se traite de même.

Exercice 4

Comme P est de degré impair, en confondant P avec la fonction polynôme associée, quitte à changer P en -P, on a :

$$\begin{cases} \lim_{-\infty} P = -\infty \\ \lim_{+\infty} P = +\infty \end{cases}$$

Ainsi la fonction P qui est continue sur \mathbb{R} change de signe strict sur \mathbb{R} : le théorème des valeurs intermédiaire assure alors l'existence de $\alpha \in R$ tel que $P(\alpha) = 0$.

Exercice 5

L'équation homogène associée est y'-y=0 et sa solution générale est $t\mapsto C\mathrm{e}^t$ où C décrit \mathbb{R} . On cherche alors une solution particulière de la forme $f:t\mapsto \lambda(t)\mathrm{e}^t$ où λ est une fonction dérivable sur \mathbb{R} . Pour tout t réel on a $f'(t)=(\lambda'(t)+\lambda(t))\mathrm{e}^t$. On a alors les équivalences :

$$y$$
 solution de $y' - y = h(t)$ sur \mathbb{R}
 $\Leftrightarrow (\lambda'(t) + \lambda(t))e^t - \lambda(t)e^t = h(t)$ pour $t \in \mathbb{R}$
 $\Leftrightarrow \lambda'(t) = h(t)e^{-t}$ pour $t \in \mathbb{R}$

On prend $\lambda: x \mapsto \int_0^x h(t) e^{-t} dt$ de sorte que la solution générale de y' - y = h(t) est :

$$x \mapsto \left(C + \int_0^x h(t)e^{-t} dt\right)e^x.$$

Exercice 6

1. • Sur]0,1[, l'équation différentielle homogène associée à (E) est (E_0) $y' + \frac{y}{x} = 0$. La solution générale de cette dernière équation est :

$$x \mapsto \lambda e^{-B(x)}$$

où λ est une constante réelle et B une primitive de $x \mapsto \frac{1}{x}$ sur]0,1[. On prend bien sûr $B(x) = \ln x$ et la solution générale de (E_0) sur]0,1[est alors :

$$x \mapsto \frac{\lambda}{x}$$
 où λ est un réel.

On cherche alors une solution particulière U de (E) sur]0,1[par la méthode de la variation de la constante. Soit $\lambda:]0,1[\to \mathbb{R}$ dérivable. On pose $U(x)=\frac{\lambda(x)}{x}$ pour $x\in]0,1[$. On a alors :

$$U'(x) = \frac{\lambda'(x)x - \lambda(x)}{x^2}$$

Ainsi:

$$\begin{array}{ll} U \text{ solution de } (E) \text{ sur }]0,1[\\ \Leftrightarrow & \frac{\lambda'(x)x-\lambda(x)}{x} + \frac{\lambda(x)}{x} = \frac{2x}{\sqrt{1-x^4}} \text{ pour } x \in]0,1[\\ \Leftrightarrow & \lambda'(x) = \frac{2x}{\sqrt{1-x^4}} \text{ pour } x \in]0,1[\\ \Leftrightarrow & \text{Il existe } C \text{ constante telle que } \lambda(x) = \arcsin x^2 + C \text{ pour } x \in]0,1[\end{array}$$

On prend alors $U(x) = \frac{\arcsin x^2}{x}$ pour $x \in]0,1[$.

Conclusion. Les solutions de (E) sur]0,1[sont donc exactement les fonctions de la forme :

$$x \mapsto \frac{\arcsin x^2 + \lambda}{x} \ \text{ où } \lambda \text{ décrit } \mathrm{I\!R}$$

• Sur] -1,0[, une primitive de $x \mapsto \frac{1}{x}$ est $x \mapsto \ln|x| = \ln(-x)$. La solution générale de (E_0) $y' + \frac{y}{x} = 0$ sur] -1,0[est donc :

 $x \mapsto \frac{\mu}{x}$ où μ est un réel.

La fonction U définie par $U(x) = \frac{\arcsin x^2}{x}$ pour $x \in]-1,0[$ est encore une solution particulière de (E) sur]-1,0[.

Conclusion. Les solutions de (E) sur]-1,0[sont donc exactement les fonctions de la forme :

$$x \mapsto \frac{\arcsin x^2 + \mu}{x}$$
 où μ décrit \mathbb{R}

2. • Si f est solution sur] -1,1[de (E) cette fonction est aussi solution de (E) sur] -1,0[et]0,1[. On dispose donc de deux constantes λ et μ telles que :

$$\begin{cases} f(x) = \frac{\arcsin x^2 + \lambda}{x} & \text{si } -1 < x < 0 \\ f(x) = \frac{\arcsin x^2 + \mu}{x} & \text{si } 0 < x < 1 \end{cases}$$

Puis f est continue en 0 et arcsin $x^2 \underset{0}{\sim} x^2$: cela force $\lambda = \mu = 0$. On a donc :

$$f(x) = \frac{\arcsin x^2}{x}$$
 pour $x \in]-1, 0[\cup]0, 1[$ et $f(0) = 0$.

• Réciproquement soit f la fonction définie sur]-1,1[par :

$$f(x) = \frac{\arcsin x^2}{x}$$
 pour $x \in]-1, 0[\cup]0, 1[$ et $f(0) = 0$.

Cette fonction f est continue en 0 et on a :

$$\lim_{x \to 0} \frac{f(x)}{x} = 1$$

donc f est dérivable en 0 de nombre dérivé f'(0) = 1. D'après la première question f est solution de (E) sur chacun des intervalles]-1,0[et]0,1[et on a bien $xf'(x)+f(x)=\frac{2x}{\sqrt{1-x^4}}$ pour x=0. On en déduit donc que f est la seule solution de (E) sur]-1,1[.

Exercice 7

Soient a_1, \ldots, a_n les racines de P rangées dans l'ordre strictement croissant. Fixons i dans $\{1, \ldots, n-1\}$. La fonction polynomiale P est continue sur $[a_i, a_{i+1}]$ et dérivable sur $]a_i, a_{i+1}[$. De plus $P(a_i) = P(a_{i+1})$: le théorème de Rolle s'applique. Il existe $b_i \in]a_i, a_{i+1}[$ tel que $P'(b_i) = 0$. Comme:

$$b_1 < a_2 < b_2 < a_3 < \dots < a_{n-1} < b_{n-1} < a_n$$

le polynôme P' admet n-1 racines distinctes.

Exercice 8

On considère la fonction $g:[a,b] \to \mathbb{R}$ définie par $g(x) = e^x (f(x) - f'(x))$. Cette fonction est dérivable sur [a,b] avec g(a) = g(b). Selon le théorème de Rolle il existe $c \in]a,b[$ tel que g'(c) = 0. Mais on a, pour tout x dans [a,b], $g'(x) = e^x (f(x) - f''(x)) \dots$

Exercice 9

On considère la fonction $g:]0, +\infty[\to \mathbb{R}$ définie par $g(x) = e^{\alpha x} f(x)$. Cette fonction est dérivable sur $]0, +\infty[$ et admet n zéros que l'on classe par ordre croissant : $a_1 < \cdots < a_n$. Fixons i dans $\{1, \ldots, n-1\}$. Comme $g(a_i) = g(a_{i+1}) = 0$, selon le théorème de Rolle, il existe c_i entre a_i et a_{i+1} tel que $g'(c_i) = 0$. Or, si x > 0, $g'(x) = e^{\alpha x} (\alpha f(x) + f'(x))$. On peut conclure...

Exercice 10

1. a) Soit $n \in \mathbb{N}^*$. On a:

$$u_n = \frac{1}{n} \sum_{k=1}^n \exp\left(\frac{k}{n^2}\right) = \frac{1}{n} \sum_{k=1}^n (e^{1/n^2})^k = \frac{1}{n} \times \frac{e^{1/n^2} - e^{1/n}e^{1/n^2}}{1 - e^{1/n^2}}$$

et il vient ainsi:

$$\ln v_n = n \ln u_n = n \left(-\ln n + \ln \left(e^{1/n} e^{1/n^2} - e^{1/n^2} \right) - \ln \left(e^{1/n^2} - 1 \right) \right)$$
$$= n \left(-\ln(n) + \frac{1}{n^2} + \ln \left(e^{\frac{1}{n}} - 1 \right) - \ln \left(e^{\frac{1}{n^2}} - 1 \right) \right).$$

b) On écrit le développement limité à l'ordre 2 de exp en 0 :

$$e^x = \underset{x \to 0}{=} 1 + x + \frac{x^2}{2} + o(x^2).$$

Ainsi, pour x non nul : $\frac{e^x - 1}{x} = 1 + \frac{x}{2} + o(x)$.

On passe au logarithme : $\ln(e^x - 1) - \ln(x) = \lim_{x \to 0} \ln\left(1 + \frac{x}{2} + o(x)\right)$.

On utilise alors le développement limité à l'ordre $1: \ln u = u + o(u)$.

Comme $u = \frac{x}{2} + o(x) \xrightarrow[x \to 0]{} 0$, il vient :

$$\ln(e^x - 1) - \ln(x) = \frac{x}{x \to 0} \cdot \frac{x}{2} + \underbrace{o(x) + o(\frac{x}{2} + o(x))}_{=o(x)}.$$

c) Comme $\frac{1}{n} \xrightarrow[+\infty]{} 0$ et $\frac{1}{n^2} \xrightarrow[+\infty]{} 0$, la question précédente donne :

$$\begin{cases} \ln\left(e^{\frac{1}{n}} - 1\right) = \ln\frac{1}{n} + \frac{1}{2n} + o\left(\frac{1}{n}\right) = -\ln n + \frac{1}{2n} + o\left(\frac{1}{n}\right) \\ \ln\left(e^{\frac{1}{n^2}} - 1\right) = \ln\frac{1}{n^2} + \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right) = -2\ln n + \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right) \end{cases}$$

Ainsi:

$$\ln v_n = n\left(-\ln(n) + \frac{1}{n^2} + \ln\left(e^{\frac{1}{n}} - 1\right) - \ln\left(e^{\frac{1}{n^2}} - 1\right)\right).$$
$$= n\left(\frac{1}{2n} + o\left(\frac{1}{n}\right)\right) = \frac{1}{2} + o\left(1\right) \xrightarrow[+\infty]{} \frac{1}{2}$$

On a donc $v_n \xrightarrow[+\infty]{} \mathrm{e}^{1/2}$ par continuité de l'exponentielle.

2. a) On écrit l'égalité des accroissements finies entre 0 et t pour la fonction exp : il existe c_t entre 0 et t tel que :

$$e^t - e^0 = (t - 0)e^{c_t}$$
.

Ainsi : $|e^t - 1| = |t| e^{c_t} \le |t| e^{|t|}$.

b) L'inégalité de Taylor-Lagrange à l'ordre 2 dit que $|e^t - 1 - t| \le \frac{t^2}{2}M$, où M est la maximum de $\exp'' = \exp \sup$ le segment d'extrémités 0 et t.

Comme $M \leq e^{|t|}$ on obtient le résultat souhaité : $|e^t - 1 - t| \leq \frac{t^2}{2}e^{|t|}$.

3. a) Démontrer qu'il existe un réel M tel que pour tout $n \in \mathbb{N}^*$ et tout $k \in \{1, \dots, n\}$ on ait :

$$\exp\left(\frac{1}{n}\left|f\left(\frac{k}{n}\right)\right|\right) \leqslant \frac{M}{n}.$$

b) • Soit $n \in \mathbb{N}^*$ et $k \in \{1, ..., n\}$. En utilisant l'inégalité de la question 2a, on a :

$$\left| \exp\left(\frac{1}{n}f\left(\frac{k}{n}\right)\right) - 1 \right| \leqslant \frac{1}{n} \left| f\left(\frac{k}{n}\right) \right| \exp\left|\frac{1}{n}f\left(\frac{k}{n}\right) \right|$$

Avec l'inégalité de la question 3a, il vient :

$$\left| \exp\left(\frac{1}{n}f\left(\frac{k}{n}\right)\right) - 1 \right| \leqslant \frac{M_0M}{n^2},$$

où M_0 borne la fonction continue f sur le segment [0,1].

Ainsi, pour tout $n \in \mathbb{N}^*$ on a:

$$|u_n - 1| = \left| \frac{1}{n} \sum_{k=1}^n \exp\left(\frac{1}{n} f\left(\frac{k}{n}\right)\right) - 1 \right| = \left| \frac{1}{n} \sum_{k=1}^n \exp\left(\frac{1}{n} f\left(\frac{k}{n}\right)\right) - \frac{1}{n} \sum_{k=1}^n 1 \right|$$

$$= \left| \frac{1}{n} \sum_{k=1}^n \left(\exp\left(\frac{1}{n} f\left(\frac{k}{n}\right)\right) - 1 \right) \right| \leqslant \frac{1}{n} \sum_{k=1}^n \left| \exp\left(\frac{1}{n} f\left(\frac{k}{n}\right)\right) - 1 \right|$$

$$\leqslant \frac{M_0 M}{n} \underset{n \to +\infty}{\longrightarrow} 0$$

Ainsi $u_n \xrightarrow[+\infty]{} 1$.

- On a $\ln v_n = n \ln u_n = n \ln(1 + u_n 1) \sim n(u_n 1)$.
- c) Établir qu'il existe un réel K tel que pour tout $n \in \mathbb{N}^*$ et tout $k \in \{1, ..., n\}$ on ait :

$$\left| n(u_n - 1) - \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right) \right| \leqslant \frac{K}{n}.$$

 \bullet Soit $n\in \mathbb{N}^*.$ et $k\in\{1,\dots,n\}$. En utilisant l'inégalité de la question 2b, on a : On a :

$$n(u_n - 1) - \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right) = \sum_{k=1}^n \exp\left(\frac{1}{n} f\left(\frac{k}{n}\right)\right) - n - \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right)$$
$$= \sum_{k=1}^n \left(\exp\left(\frac{1}{n} f\left(\frac{k}{n}\right)\right) - 1 - \frac{1}{n} f\left(\frac{k}{n}\right)\right)$$

Ainsi, par inégalité triangulaire :

$$\left| n(u_n - 1) - \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right) \right| \le \sum_{k=1}^n \left| \exp\left(\frac{1}{n} f\left(\frac{k}{n}\right)\right) - 1 - \frac{1}{n} f\left(\frac{k}{n}\right) \right|.$$

En utilisant l'inégalité de la question 2b, on obtient pour tout $k \in \{1, \dots, n\}$:

$$\left|\exp\left(\frac{1}{n}f\left(\frac{k}{n}\right)\right) - 1 - \frac{1}{n}f\left(\frac{k}{n}\right)\right| \leqslant \frac{1}{2n^2}\left|f\left(\frac{k}{n}\right)\right|^2 \exp\left|\frac{1}{n}f\left(\frac{k}{n}\right)\right|.$$

Avec la question 3a, il vient alors:

$$\left| \exp\left(\frac{1}{n}f\left(\frac{k}{n}\right)\right) - 1 - \frac{1}{n}f\left(\frac{k}{n}\right) \right| \leqslant \frac{1}{2n^2}M_1^2\frac{M}{n},$$

où M_1 borne f^2 sur [0,1]. Ainsi :

$$\left| n(u_n - 1) - \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right) \right| \leqslant \sum_{k=1}^n \frac{1}{2n^2} M_1^2 \frac{M}{n} = \frac{1}{2n^2} M_1^2 M.$$

d) Par somme de Riemann on a : $\frac{1}{n}\sum_{k=1}^n f\left(\frac{k}{n}\right) \xrightarrow[+\infty]{} \int_0^1 f(t)\ dt$.

Par inégalité trinagulaire :

$$\left| n(u_n - 1) - \int_0^1 f(t) \, \mathrm{d}t \right| \le \left| n(u_n - 1) - \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right) \right| + \left| \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right) - \int_0^1 f(t) \, \mathrm{d}t \right| \xrightarrow[+\infty]{} 0.$$

Ainsi
$$n(u_n - 1) \xrightarrow[+\infty]{} \int_0^1 f(t) dt$$
.

Or $\ln v_n \sim n(u_n - 1)$ donc, par continuité de l'exponentielle, $v_n \xrightarrow[+\infty]{} \exp\left(\int_0^1 f(t) dt\right)$.

4. On applique ce qui précède avec la fonction $f = \ln q$, qui est correctement définie...

Partie II - Exercices de mathématiques générales et d'algèbre linéaire

Exercice 11

- 1. Montrons que f est surjective. Soit $y \in Y$. On a alors $y = f \circ g(y) = f[g(y)]$: y est l'image par f de g(y). L'application f est bien surjective.
 - Montrons que g est injective. Soient y_1 et y_2 dans Y tels que $g(y_1) = g(y_2)$. On a alors $f[g(y_1)] = f[g(y_2)]$, donc $y_1 = y_2$ puisque $f \circ g = \text{Id}_Y$. Ainsi g est injective.
- 2. Montrons que f est bijective. Comme $f \circ g = \operatorname{Id}_Y$, d'après la question précédente, f est surjective. Comme $g \circ f = \operatorname{Id}_X$, toujours d'après la question précédente, f est injective. Ainsi f est bijective.
 - On a $f \circ g = \operatorname{Id}_Y$ donc $\underbrace{f^{-1} \circ f}_{=\operatorname{Id}_X} \circ g = f^{-1}$. Ainsi $f^{-1} = g$.

Exercice 12

1. • Soient $(P,Q) \in E^2$ et $\lambda \in \mathbb{R}$. On a :

$$\underline{f(\lambda P + Q)} = (\lambda P + Q)(X + 1) - (\lambda P + Q)(X) = \lambda (P(X + 1) - P(X)) + Q(X + 1) - Q(X)$$

$$= \underline{\lambda f(P) + f(Q)}$$

Il en résulte que f est une application linéaire. Comme $f(P) \in E$ (son degré est inférieur à 1), f est un endomorphisme de E.

• La base canonique de E est $\beta = (1, X, \dots, X^n)$. On a f(1) = 0 et pour tout $k \in \{1, \dots, n\}$ il vient :

$$f(X^k) = (X+1)^k - X^k = \sum_{i=0}^k \binom{k}{i} X^i - X^k = \sum_{i=0}^{k-1} \binom{k}{i} X^i.$$

Ainsi la matrice de u dans β est :

$$A = [f]_{\beta} = \begin{pmatrix} 0 & \begin{pmatrix} 1 \\ 0 \end{pmatrix} & \begin{pmatrix} 2 \\ 0 \end{pmatrix} & \cdots & \begin{pmatrix} n \\ 0 \end{pmatrix} \\ 0 & 0 & \begin{pmatrix} 2 \\ 1 \end{pmatrix} & \cdots & \begin{pmatrix} n \\ 1 \end{pmatrix} \\ \vdots & \ddots & 0 & \vdots \\ \vdots & & \ddots & \ddots & \begin{pmatrix} n \\ n-1 \end{pmatrix} \\ 0 & \cdots & \cdots & 0 & 0 \end{pmatrix} \in \mathcal{M}_{n+1}(\mathbb{R}).$$

2. Cette matrice est de rang n donc le noyau de f est de dimension 1. Comme f(1) = 0, ker $f = \text{vect}(1) = \mathbb{R}_0[X]$. Puis $\text{Im } f \subset \mathbb{R}_{n-1}[X]$ et dim Im f = n on peut conclure que $\text{Im } f = \mathbb{R}_{n-1}[X]$.

Exercice 13 (Valeurs propres d'une matrice)

- 1. Une matrice est inversible si et seulement si son déterminant est non nul. Ainsi, pour $\lambda \in \mathbb{K}$, la matrice $M \lambda I$ est singulière si et seulement si son déterminant est nul, ce qui justifie que : « les valeurs propres de M sont exactement les valeurs de λ qui annulent ce déterminant ».
- 2. a) Soit $\lambda \in \mathbb{C}$. On a : $A \lambda I = \begin{pmatrix} 4 \lambda & -3 & 9 \\ 6 & -5 \lambda & 9 \\ 0 & 0 & -2 \lambda \end{pmatrix}$. Ainsi, en développant par rapport à la dernière ligne, on a :

$$\det(A - \lambda I) = (-2 - \lambda) \begin{vmatrix} 4 - \lambda & -3 \\ 6 & -5 - \lambda \end{vmatrix}$$

$$= (-2 - \lambda) [(4 - \lambda)(-5 - \lambda) + 18]$$

$$= (-2 - \lambda) \underbrace{(\lambda^2 + \lambda - 2)}_{=(\lambda - 1)(\lambda + 2)}$$

$$= -(\lambda + 2)^2 (\lambda - 1)$$

Les valeurs propres de A sont donc -2 et 1.

- b) Soit $\lambda \in \mathbb{C}$. On a $A \lambda I = \begin{pmatrix} -\lambda & 1 \\ -1 & -\lambda \end{pmatrix}$ donc $\det(A \lambda I) = \lambda^2 + 1$. La matrice A n'a pas de valeur propre réelle mais admet deux valeurs propres complexes qui sont -i et i.
- c) On remarque de suite que A-I est de rang 1 donc 1 est valeur propre. On verra par la suite comment exploiter cela sans aucun calcul.

Soit λ dans \mathbb{C} . On a $A_{\lambda}I=\begin{pmatrix}2-\lambda&1&1\\1&2-\lambda&1\\1&1&2-\lambda\end{pmatrix}$. En remplaçant la première colonne par la somme de toutes les colonnes il vient :

$$\det(A - \lambda I) = \begin{vmatrix} 4 - \lambda & 1 & 1 \\ 4 - \lambda & 2 - \lambda & 1 \\ 4 - \lambda & 1 & 2 - \lambda \end{vmatrix} = (4 - \lambda) \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 - \lambda & 1 \\ 1 & 1 & 2 - \lambda \end{vmatrix}.$$

Un développement par rapport à la première colonne donne alors :

$$\det(A - \lambda I) = (4 - \lambda) \left(\begin{vmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{vmatrix} - \begin{vmatrix} 1 & 1 \\ 1 & 2 - \lambda \end{vmatrix} + \begin{vmatrix} 1 & 1 \\ 2 - \lambda & 1 \end{vmatrix} \right)$$

$$= (4 - \lambda) \left((2 - \lambda)^2 - 1 - 2 + \lambda + 1 + 1 + \lambda - 2 \right)$$

$$= (4 - \lambda)(\lambda^2 - 2\lambda + 1) = (4 - \lambda)(\lambda - 1)^2$$

Conclusion. Les valeurs propres de A sont 1 et 4.

3. Soit
$$\lambda \in \mathbb{C}$$
. On a $A - \lambda I = \begin{pmatrix} 1 - \lambda & -1 \\ 1 & 1 - \lambda \end{pmatrix}$ et ainsi :
$$\det(A - \lambda I) = (1 - \lambda)^2 + 1 = (1 - \lambda)^2 - i^2 = (1 - i - \lambda)(1 + i - \lambda)$$

Conclusion. Les valeurs propres complexes de A sont 1-i et 1+i.

Exercice 14

On raisonne par analyse/synthèse.

Analyse. Supposons que $E = \text{Im } f + \ker f$. Soit x dans E. On peut alors écrire x = y + z avec $y \in F$ et $z \in G$. Ainsi:

$$f(x) = f(y) + f(z) = p(y).$$

Comme $y \in \text{Im } f$, il existe x' dans E tel que y = f(x'). Il vient alors :

$$f(x) = f(y) = f(f(x')) = f^{2}(x') = f(x'),$$

puisque $f^2 = f$. Il en résulte que :

$$(\spadesuit) \begin{cases} y = f(x) \\ z = x - f(x) \end{cases}$$

Synthèse. Soit x dans E. On définit y et z par (\spadesuit) . On a alors :

$$\begin{cases} x = y + z \\ y = f(x) \in \text{Im } f \\ f(z) = f(x) - f^2(x) = f(x) - f(x) = 0 \text{ donc } z \in \ker f \end{cases}.$$

Il en résulte que $E = \operatorname{Im} f + \ker f$ et même $E = \operatorname{Im} f \oplus \ker f$, puisque d'après (\spadesuit) , la décomposition est unique.

Exercice 15

- 1. L'ensemble $\{q \in \mathbb{N} \mid N^q = 0\}$ est une partie non vide de \mathbb{N} : elle admet un plus petit élément. Il existe donc un plus petit entier p tel que $N^p = 0$.
- 2. Posons $B = \sum_{k=0}^{p-1} N^k$ (notons que p ne peut être égal à 0, puisque $N^0 = I...$). On a alors :

$$AB = (I - N) \sum_{k=0}^{p-1} N^k = I - N^p = I.$$

Ainsi A est inversible d'inverse B.

- 3. D'après la question précédente, on a : $(I A^{-1}) = \sum_{k=1}^{p-1} N^k$. Ainsi, en posant $M = I A^{-1}$, on aura $M^p = 0$ puisqu'en développant, tous les termes contiendront une matrice de la forme N^q avec $q \ge p$ entier, qui est nulle.
- Exercice 16
 1. Utilisons nos connaissances de terminale. F est une droite vectorielle de paramétrisation $\begin{cases} x = -\frac{t}{2} \\ y = \frac{t}{2} \end{cases}$. Ainsi F

est un sous-espace vectorielle de \mathbb{R}^3 de dimension 1 et une base de F est donnée par un vecteur directeur de cette droite, par exemple $\varepsilon_1 = (-2, 2, 1)$.

- G est le noyau de la forme linéaire $g:(x,y,z)\mapsto x-y+z$. Ainsi G est un sous-espace vectoriel de \mathbb{R}^3 de dimension 2. Puis les vecteurs $\varepsilon_2=(1,1,0)$ et $\varepsilon_3=(1,0,-1)$ sont dans G et ne sont pas colinéaires : $(\varepsilon_2,\varepsilon_3)$ est une base de G.
- On a $F \subset G$ donc $F \cap G = F$ et $F \cup G = G$.
- 2. Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est :

$$M = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & -1 & -2 \end{pmatrix}.$$

Déterminer le noyau et l'image de f.

Notons C_1, C_2 et C_3 les colonnes de M. Comme C_1 et C_2 ne sont pas proportionnelles, $\operatorname{rg} M \geqslant 2$. Puis $C_1 - 2C_2 + C_3 = 0$, donc $\operatorname{rg}(M) \leqslant 2$. Le théorème du rang affirme alors que ker f est de dimension 1.

Puisque $C_1 - 2C_2 + C_3 = 0$, en notant (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 , on a $f(e_1 - 2e_2 + e_3) = 0$. Il en résulte que ker f = vect(1, -2, 1).

Puis Im $f = \text{vect}(f(e_1), f(e_2), f(e_3)) = \text{vect}(f(e_1), f(e_2))$ puisque $f(e_3)$ est combinaison linéaire de $f(e_1) = \varepsilon_2$ et $f(e_2) = \varepsilon_3$. Ainsi, comme Im f est de dimension 2, une base de Im f est $(\varepsilon_2, \varepsilon_3)$, donc Im f = F.

Exercice 17

1. • Montrons que la famille \mathcal{B} est libre. Soient α_0 , α_1 , α_2 et α_3 des réels tels que :

$$\alpha_0 f_0 + \alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3 = 0_E.$$

Comme exp > 0, il vient pour tout x réel : $\alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3 = 0_{\mathbb{R}}$.

Il en résulte que le polynôme $\sum_{i=0}^{3} \alpha_i X^i$ est nul donc tous ses coefficients sont nuls. Ainsi $\alpha_0 = \alpha_1 = \alpha_2 = \alpha_3 = 0_{\mathbb{R}}$.

Conclusion. β est une famille libre de F

- La famille \mathcal{B} est libre dans F et engendre F, par définition de F: c'est donc une base de F. Comme cette famille est de cardinal 4, on a $\dim F = 4$
- 2. Par linéarité de la dérivation, D est linéaire.

On a:

- On a $f_0' = -f_0$ et $f_0'' = f_0$, donc $D(f_0) = -2f_0$.
- $f'_1 = -f_1 + f_0$, $f''_1 = -f'_1 + f'_0 = f_1 f_0 f_0$. Ainsi $D(f_1) = -2f_1 + 3f_0$. $f'_2 = 2f_1 f_2$ et $f''_2 = 2f'_1 f'_2 = -2f_1 + 2f_0 2f_1 + f_2$. Ainsi $D(f_2) = -2f_2 + 6f_1 3f_0$.
- $f_3' = 3f_2 f_3$ et $f_3'' = 3f_2' f_3' = 6f_1 3f_2 3f_2 + f_3$ donc $D(f_3) = -2f_3 + 9f_2 6f_1$.

Ainsi les images par D des éléments de \mathcal{B} sont encore dans F. Il en résulte que D est un endomorphisme de F et sa matrice dans la base \mathcal{B} est :

$$M = \begin{pmatrix} -2 & 3 & -2 & 0 \\ 0 & -2 & 6 & -6 \\ 0 & 0 & -2 & 9 \\ 0 & 0 & 0 & -2 \end{pmatrix}.$$

3. La matrice M est inversible : 0 n'est pas valeur propre de M.

Exercice 18

1. L'application ψ est bien bilinéaire, symétrique et positive (à montrer).

Soit $P \in E$ tel que $\psi(P,P) = 0$ alors $\int_0^1 P^2 = 0$. Comme $t \mapsto P^2(t)$ est une application **continue** et **positive**, on peut dire que pour tout $t \in [0,1]$ on a $P^2(t) = 0$ donc P(t) = 0. Ainsi le polynôme P admet une infinité de racines ce qui permet de dire que P=0.

Conclusion. Ψ est bien une forme bilinéaire définie positive : c'est un produit scalaire sur E.

2. L'application ψ est bien bilinéaire, symétrique et positive (à montrer).

Comme ci-dessus, si $f \in F$ vérifie $\psi(f, f) = 0$ alors f est nulle sur [0, 1] mais rien ne permet d'affirmer qu'elle est nulle sur IR. Mieux il existe (facile) des fonctions continues non nulles sur IR mais nulles sur l'intervalle [0, 1].

Conclusion. ψ n'est pas un produit scalaire sur F.

FIN DE LA CORRECTION