Digest sur les suites réelles ou complexes

PC, Lycée Joffre

9 décembre 2024

Table des matières

1	onvergence	
	1 Définitions	
	2 Premières propriétés	
	3 Limites et inégalités	
	4 Le théorème de la limite monotone dans \mathbb{R}	
	5 Le théorème des suites adjacentes	
2	imite infinie d'une suite réelle	
	1 Définition	
	2 Limites et inégalités	
	3 Le théorème de la limite monotone	
3	otions rudimentaires sur les suites extraites	
4	aractérisation séquentielle de certains phénomènes	
5	uites particulières	
	1 Quelques sommes	
	2 Suites arithmético-géométriques	
	3 Suites récurrentes linéaires d'ordre 2	
6	elations de comparaison pour les suites	
	1 Définitions	
	2 Des exemples à connaître	
	3 Propriétés	
	4 Opérations sur les équivalents	

1 Convergence

1.1 Définitions

 ${\bf NB}$: les suites considérées sont des suites réelles ou complexes. $\mathbb K$ désigne $\mathbb R$ ou $\mathbb C$.

- Une suite dans \mathbb{K} est une application $u: \mathbb{N} \to \mathbb{K}$. On note en général, pour $n \in \mathbb{N}$, u_n à la place de u(n).
- Une suite réelle u est **majorée** lorsqu'il existe un réel M tel que pour tout $n \in \mathbb{N}$ on ait $u_n \leq M$. Une suite dans \mathbb{K} est **bornée** lorsqu'il existe un réel M tel que pour tout $n \in \mathbb{N}$ on ait $|u_n| \leq M$.
- Monotonie. Une suite réelle u est strictement croissante lorsque, pour tout $n \in \mathbb{N}$, on a $u_n < u_{n+1}$. On a de même la notion de suite croissante (remplacer < par \le), de suite décroissante et de suite strictement décroissante. Une suite est monotone lorsqu'elle croissante ou décroissante.
 - Une suite u dans \mathbb{K} converge vers $\ell \in \mathbb{K}$ lorsque :

$$\left[(\forall \varepsilon > 0) (\exists N_{\varepsilon} \in \mathbb{IN}) (\forall n \geqslant N_{\varepsilon}) (|u_n - \ell| \leqslant \varepsilon) \right]$$

On écrit alors $\lim_{n\to+\infty} u_n = \ell$ ou $u_n \xrightarrow[+\infty]{} \ell$.

- Cela signifie que pour tout $\varepsilon > 0$ donné tous les termes de la suite u se trouve, à partir d'un certain rang dépendant du choix de ε , dans le disque de centre ℓ et de rayon ε (dans le cas complexe) ou dans un intervalle de centre ℓ et de rayon ε (dans le cas réel).
- Le nombre ε quantifie la distance entre ℓ et les termes de la suite : a priori il est petit.
- Noter que, d'après l'ordre des quantificateurs, N_{ε} dépend du choix de ε . A priori plus ε est petit, plus N_{ε} est grand
- Un suite réelle ou complexe est convergente lorsque :

$$(\exists \ell \in \mathbb{K}) (\forall \varepsilon > 0) (\exists N_{\varepsilon} \in \mathbb{N}) (\forall n \geqslant N_{\varepsilon}) (|u_n - \ell| \leqslant \varepsilon)$$

1.2 Premières propriétés

Théorème 1

Lorsque u est une suite dans \mathbb{K} , la suite u converge vers 0 si et seulement si la suite |u| converge vers 0.

Théorème 2 (Unicité de la limite)

Si u est une suite dans \mathbb{K} qui converge vers ℓ et λ alors $\ell = \lambda$.

Théorème 3

Toute suite convergente dans K est bornée.

Remarque 1.1

Il n'y a pas de réciproque (considérer $u_n = (-1)^n$).

1.3 Limites et inégalités

On parle ici de suites réelles.

Théorème 4 (Passage à la limite dans une inégalité)

Soient u et v des suites qui convergent respectivement vers $\ell \in \mathbb{R}$ et $\lambda \in \mathbb{R}$. Si, pour tout n à partir d'un certain rang, on a $u_n < v_n$ alors $\ell \leqslant \lambda$.

Remarque.

- On retient que l'on ne garde pas l'inégalité stricte par passage à la limite.
- \bullet Bien noter que les suites u et v sont convergentes par hypothèses.

Théorème 5 (Le théorème du Sandwich)

Soient u, v et w des suites réelles. On suppose que :

- Les suite u et w convergent vers le même réel ℓ ;
- Il existe $N \in \mathbb{N}$ tel que, pour tout $n \ge N$, on ait $u_n \le v_n \le w_n$.

Alors la suite v converge vers ℓ .

Remarque 1.2

Ce théorème est à la fois qualitatif et quantitatif. La conclusion est double : il permet d'assurer l'existence d'une limite et de quantifier cette limite.

Corollaire 5.1

- 1. Le produit d'une suite de limite nulle par une suite bornée converge vers 0.
- 2. Tout réel est limite d'une suite de rationnels.

1.4 Le théorème de la limite monotone dans IR

Théorème 6

- 1. Toute suite réelle croissante et majorée converge.
- 2. Toute suite réelle décroissante et minorée converge.

Remarque 1.3

C'est un résultat qualitatif : il ne permet pas de déterminer la limite. Ce résultat sert à assurer l'existence de la limite d'une suite, mais pour déterminer cette limite, il faudra utiliser un autre théorème.

1.5 Le théorème des suites adjacentes

On travaille ici avec des suites réelles.

Définition 1 Deux suites réelles sont adjacentes lorsque :

- l'une est décroissante;
- l'autre est croissante;
- la limite de la différence des deux suites est nulle.

Théorème 7 (Théorème des suites adjacentes)

Deux suites adjacentes u et v convergent vers le même réel ℓ . Ce réel est l'unique réel tel que, pour tout n entier naturel, on ait $u_n \leq \ell \leq v_n$.

EXEMPLE. Les suites
$$u_n = \sum_{k=0}^n \frac{1}{k!}$$
 et $v_n = u_n + \frac{1}{nn!}$ sont adjacentes et convergent vers e .

2 Limite infinie d'une suite réelle

2.1 Définition

Une suite réelle tends vers $+\infty$ et on écrit $u_n \xrightarrow[+\infty]{} +\infty$ lorsque :

$$(\forall A > 0) (\exists N_A \in \mathbb{N}) (\forall n \geqslant N_{\varepsilon}) (u_n \geqslant A)$$

Dans cette définition, le réel A est moralement grand et l'entier N_A dépend du choix de A. De même on a la notion de suites qui admettent $-\infty$ pour limite. Ces suites sont dites divergentes de première espèce.

2.2 Limites et inégalités

Théorème 8

Si $u_n \leqslant v_n$ pour tout n à partir d'un certain rang et si $u_n \xrightarrow[+\infty]{} +\infty$ alors $\exists \lim_{n \to +\infty} v_n = +\infty$.

Remarque 2.1

Penser à toutes les variantes possibles du résultat ci-dessus.

2.3 Le théorème de la limite monotone

Théorème 9

Toute suite réelle croissante et non majorée diverge vers $+\infty$.

Remarque 2.2

Il y a bien sur un énoncé analogue pour une suite décroissante et non minorée.

3 Notions rudimentaires sur les suites extraites

Définition 2 Une extraction est une application $\varphi : \mathbb{N} \to \mathbb{N}$ strictement croissante. Lorsque u est une suite dans K on dit que v est une suite extraite de u lorsqu'il existe φ extraction telle que pour tout n dans \mathbb{N} on ait $v_n = u_{\varphi(n)}$.

Théorème 10

Lorsque u, suite dans \mathbb{K} , admet une limite en $+\infty$, toute suite extraite de u admet la même limite.

Remarque 3.1

- 1. Si $u_n \to \ell$ alors pour tout q entier la suite définie par $v_n = u_{n+q}$ converge vers ℓ : on ne change pas le comportement asymptotique de la suite en y enlevant ses premiers termes.
- 2. **Deux par deux** : $u_n \to \ell$ si et seulement si $(u_{2n} \to \ell \text{ et } u_{2n+1} \to \ell)$ (pour u suite dans \mathbb{K}).

4 Caractérisation séquentielle de certains phénomènes

Théorème 11 (Caractérisation séquentielle de la limite)

Soient I un intervalle de \mathbb{R} , $f: I \to \mathbb{R}$, $a \in \overline{I}$ et $\ell \in \mathbb{R}$. Les deux propriétés suivantes sont équivalentes.

- $(1) f(x) \longrightarrow \ell$
- (2) Pour toute suite (u_n) dans I telle que $u_n \xrightarrow[+\infty]{} a$ on a $f(u_n) \xrightarrow[+\infty]{} \ell$.

Démonstration. \bullet (1) \Rightarrow (2) est le théorème de composition des limites.

• (2) \Rightarrow (1) Par l'absurde. On suppose a réel (adapter si $a = +\infty...$). On suppose donc :

$$(\exists \varepsilon > 0) (\forall \alpha > 0) (\exists x \in I) (|x - a| \leqslant \alpha \text{ et } |f(x) - \ell| > \varepsilon)$$

En prenant, à n fixé dans \mathbb{N} , $\alpha = 2^{-n}$, on donc l'existence de x_n dans I tel que $|x_n - a| \leq 2^{-n}$ et $|f(x_n) - \ell| > \varepsilon$. Cela nous fournit donc une suite (x_n) dans I telle que $x_n \xrightarrow[]{}_{+\infty} a$ et $f(x_n)$ ne converge pas vers ℓ : c'est absurde. \square

Théorème 12 (Caractérisation séquentielle de la continuité)

Soient $a \in I$ intervalle de \mathbb{R} , $f: I \to \mathbb{R}$. Alors f est continue en a si et seulement si pour toute suite (x_n) dans I telle que $x_n \xrightarrow[]{} a$ on a $f(x_n) \xrightarrow[]{} f(a)$.

Corollaire 12.1

Soient I un intervalle de \mathbb{R} , $f: I \to \mathbb{R}$ continue qui vérifie $f(I) \subset I$ et (u_n) une suite définie par $u_0 \in I$ et $u_{n+1} = f(u_n)$ pour $n \in \mathbb{N}$. Si la suite (u_n) converge vers $\ell \in I$ alors $f(\ell) = \ell$.

Théorème 13 (Caractérisation séquentielle de la borne inférieure)

Soit A une partie minorée et non vide de IR. Démontrer que les propriétés suivantes sont équivalentes.

- (1) $m = \inf A$
- (2) m minore A et il existe une suite (u_n) dans A telle que $u_n \xrightarrow{+\infty} m$.

Démonstration. Comme A est minorée et non vide, inf A existe bien dans IR (axiome de la borne inférieure).

- (1) \Rightarrow (2). On suppose $m = \inf A$. Ainsi m minore A. De plus, pour tout $\varepsilon > 0$ il existe $a \in A$ tel que $a m \leqslant \varepsilon$. Ainsi, pour tout $n \in \mathbb{N}$ il existe $x_n \in A$ tel que $0 \leqslant x_n m \leqslant 2^{-n}$ et par sandwich on a $x_n \xrightarrow[+\infty]{} a$.
- Réciproque bla^2 .

5 Suites particulières

5.1 Quelques sommes

$$\Sigma_1 = \sum_{k=1}^n k = \frac{n(n+1)}{2}, \ \Sigma_2 = \sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6} \text{ et } \Sigma_3 = \sum_{k=1}^n k^3 = \Sigma_1^2$$

5.2 Suites arithmético-géométriques.

Il s'agit des suites de la forme $u_{n+1} = au_n + b$ où a et b sont des complexes $(a \neq 1)$. Si α est la solution de l'équation x = ax + b alors $v_n = u_n - \alpha$ est une suite géométrique de raison a ce qui permet de déterminer u_n pour tout n entier. En effet pour n entier naturel :

$$v_{n+1} = v_{n+1} - \alpha = au_n + b - (a\alpha + b) = \alpha(u_n - \alpha) = \alpha v_n$$

Suites récurrentes linéaires d'ordre 2.

On considère ici les suites (u_n) dans \mathbb{K} définie, pour n entier naturel, par la relation de récurrence

$$u_{n+2} = au_{n+1} + bu_n \quad (\clubsuit)$$

où a et b sont dans \mathbb{K} .

Ces suites forment un espace vectoriel sur K de dimension 2. Pour déterminer ces suites on considère l'équation caractéristique:

$$(EC) \quad X^2 - aX - b = 0$$

— Lorsque (EC) a deux racines **distinctes** r_1 et r_2 dans \mathbb{K} alors les suites dans \mathbb{K} qui vérifient (\clubsuit) sont exactement celles de la la forme

$$n \mapsto \alpha r_1^n + \beta r_2^n$$
 où $(\alpha, \beta) \in \mathbb{K}^2$

— Lorsque (EC) a une racine double r dans K alors les suites dans K qui vérifient (\clubsuit) sont exactement celles de la la forme

$$n \mapsto (\alpha n + \beta)r^n$$
 où $(\alpha, \beta) \in \mathbb{K}^2$

— Lorsque $\mathbb{K} = \mathbb{R}$ on a un cas supplémentaire. Lorsque (EC) n'a pas de solution réelle, elle admet deux solutions complexes conjuguées $\rho e^{i\theta}$ et $\rho e^{-i\theta}$ et alors les suites dans IR qui vérifient (\clubsuit) sont exactement celles de la la forme

$$n \mapsto \rho^n(\alpha \cos n\theta + \beta \sin n\theta)$$
 où $(\alpha, \beta) \in \mathbb{K}^2$

Relations de comparaison pour les suites 6

Définitions 6.1

Définition 3 Les suites considérées sont des suites réelles ou complexes. Soient u_n et v_n deux suites complexes.

- 1. On dit que u_n est négligeable devant v_n et on écrit $u_n \ll v_n$ ou $u_n = o(v_n)$ lorsque pour tout $n \in \mathbb{N}$ on a $u_n = v_n \varepsilon_n$ avec $\varepsilon_n \to 0$.
- 2. On dit que u_n est équivalente à v_n et on écrit : $u_n \underset{+\infty}{\sim} v_n$ lorsque pour tout $n \in \mathbb{N}$ on a $u_n =$ $v_n(1+\varepsilon_n)$ avec $\varepsilon_n \to 0$.
- 3. On dit que u_n est dominée par v_n et on écrit $u_n = O(v_n)$ lorsque lorsque pour tout $n \in \mathbb{N}$ on a

Remarque 6.1

1. Lorsque la suite v_n ne s'annule pas on a :

$$-u_n = o(v_n) \Leftrightarrow \frac{u_n}{v} \to 0$$

$$-u_n \underset{\perp_{\infty}}{\sim} v_n \Leftrightarrow \frac{\omega_n}{v_n} \to 1$$

$$-u_n = o(v_n) \Leftrightarrow \frac{u_n}{v_n} \to 0$$

$$-u_n \underset{+\infty}{\sim} v_n \Leftrightarrow \frac{u_n}{v_n} \to 1$$

$$-u_n = O(v_n) \Leftrightarrow \frac{u_n}{v_n} \text{ born\'ee}$$

2. Ne pas écrire $u_n \sim 0$. En effet cela signifie $u_n = 0$ à partir d'un certain rang

6.2Des exemples à connaître

- Si $u_n \to 0$ alors :
 - $-\ln(1+u_n) \sim u_n$
 - $-\sin(u_n) \sim u_n$
 - $-e^{u_n}-1\sim u_n$
 - $\tan(u_n) \sim u_n$

Ces exemples sont basés sur le fait suivant : si f est une fonction dérivable en 0 alors l'indentité de la dérivée donne

$$f(x) = f(0) + f'(0)x + x\varepsilon(x)$$
 où $\lim_{x \to 0} \varepsilon(x) = 0$

5

• La formule de STIRLING (admise pour l'instant) : $n! \sim \left(\frac{n}{e}\right)^n \sqrt{2n\pi}$

Propriétés 6.3

Théorème 14

- $Si u_n \sim v_n$ et $v_n \sim w_n$ alors $u_n \sim w_n$.
- Une caractérisation importante : $u_n \sim v_n$ si et seulement si $u_n v_n = o(v_n)$.
- $\begin{array}{ll} & Si \; u_n = o(v_n) \; alors \; u_n + v_n \sim v_n. \\ & Si \; u_n \sim v_n \; et \; u_n \xrightarrow[+\infty]{} \ell \; alors \; v_n \xrightarrow[+\infty]{} \ell. \end{array}$
- $Si \ \ell \in \mathbb{C}^*, \ u_n \to \ell \Leftrightarrow u_n \sim \ell$
- $-u_n \to 0 \Leftrightarrow u_n = o(1)$
- $-(u_n) born\acute{e}e \Leftrightarrow u_n = O(1)$

6.4 Opérations sur les équivalents

- Produit/inverse et quotient : tout se passe bien. Par exemple $\frac{P(n)}{Q(n)} \sim$ quotient des termes de plus haut degré.
- On ne peut pas en général sommer des équivalents. Un principe : ne pas écrire $u_n \sim$ somme dont les termes ont des ordres de grandeur différents. Par exemple écrire $u_n \sim \frac{1}{n} + \frac{1}{n^2} + \frac{1}{n^3}$ est débile puisque l'on a aussi $u_n \sim \frac{1}{n} + \frac{2}{n^2} + \frac{100}{n^3}$; on écrit plutôt :

$$u_n \sim \frac{1}{n}$$

Prendre un équivalent, c'est travailler au premier ordre.

• Equivalents et exponentielles. Cela ne marche pas en général. $u_n \sim v_n \Rightarrow e^{u_n} \sim e^{v_n}$ est FAUX. Le bon énoncé est:

$$u_n - v_n \to 0 \Leftrightarrow e^{u_n} \sim e^{v_n}$$

- Equivalents et logarithmes : $u_n \sim v_n \Rightarrow \ln u_n \sim \ln v_n$ est FAUX en général.
- TECHNIQUE : pour éviter ces écueils, on peut remplacer les équivalents par des égalités en revenant à la définition.
 - Par « comparaison série/intégrale » on peut montrer que $H_n \sim \ln n$ où $H_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n}$.

Croissances comparées 6.5

Théorème 15

On a pour $\alpha > 0$, $\beta > 0$, a > 1:

$$\boxed{ (\ln n)^{\alpha} \ll n^{\beta} \ll a^{n} \ll n! \ll n^{n} }$$

La preuve de ce résultat utilise par exemple le lemme suivant, intéressant à démontrer en soit, et qui peut servir pour les séries :

LEMME. Pour deux suites strictement positives, si à partir d'un certain rang on a :

$$\frac{u_{n+1}}{u_n} \leqslant \frac{v_{n+1}}{v_n} \quad alors \quad u_n \underset{+\infty}{=} O(v_n)$$

S'entraı̂ner sur la preuve de $n^{\beta} \ll a^n$.